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PREFACE

In the last decades, progress in the knowledge of marine enzymes has

advanced exponentially. The growing interest on marine enzymes is related

to their relevant properties that make them quite attractive because some-

how they are different from the well-known terrestrial enzymes. Marine

organisms may have to face extreme environmental conditions, and this

makes that most of their enzymes be active and stable under extreme con-

ditions like very high or very low temperatures, high pressure, tolerance

to high salt concentration, stability to acid or basic pH, and easy adapta-

tion to cold conditions. All these properties make marine enzymes very

attractive for new catalytic reactions and, of course, new applications in

food and nutrition. In view of this increased interest, Advances in Food

and Nutrition Research publishes three consecutive volumes focused on

the topic Marine Enzymes Biotechnology: Production and Industrial Application.

Parts I and II were published in 2016 and the third part is published in

2017. Volume 78 corresponded to Part I that was mainly dealing with

the production of enzymes from marine sources, volume 79 corresponded

to Part II dealing with the marine organisms producing enzymes, and this

volume 80 corresponds to Part III dealing with the applications of marine

enzymes.

This volume brings 10 chapters reporting the applications of enzymes

produced by marine organisms. So, this includes the potential use of

enzymes derived from marine sources as therapeutic agents for cancer

therapy or other potential biological applications relevant to human

health as well as the biomedical applications of enzymes from marine

actinobacteria, the biotechnological applications of marine enzymes from

algae, bacteria, fungi, and sponges, the use of enzymes from Bacillus subtilis

to facilitate the nutrients assimilation from unconventional and economic

plant resources in aquaculture marine animals, the use of marine probiotic

enzymes to improve host digestion and cleave molecular signals involved

in quorum sensing in pathogens to control disease in aquaculture, the

economic production of actinobacterial enzymes from agricultural wastes

as a better alternative for utilization of biomass, the action of marine enzymes

for bioremediation of industrial wastes and for the development of efficient

processes for bioethanol production, and the use of marine enzymes in

xi



fermented fish products. This volume presents the combined effort of

30 professionals with diverse expertise and background. The Guest Editors

wish to thank the publisher production staff and all the contributors for shar-

ing their experience and for making this book possible.

S.-K. KIM AND F. TOLDRÁ

Guest Editors
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1. INTRODUCTION

Fermented fish products are very popular in Southeast Asian coun-

tries; however, the products are actually also found in other parts of the

world. Fermentation of fish is an ancient technology that has already been

employed by our ancestors a long time ago. The processing is traditionally

used to overcome the perishable nature of fish. Fermented fish is an old staple

food in European cuisines; for instance, the ancient Greeks and Romans

made a famous fermented fish product called “garum.” The product has

pasta form and very strong smell. Garum is made through a fermentation

process of entrails and blood of mackerel (Ching, Mauguin, & Mescle,

1992; Gildberg, Simpson, & Haard, 2000; Skåra, Lars Axelsson,

Stefansson, & Ekstran, 2015).

Fermented fish products usually have special consumers because of their

ability to provide a certain unique characteristic, especially in terms of

aroma, flavor, and texture. This is due to a transformation of organic mate-

rials into compounds which are simpler by the activity of microorganisms or

enzymes that are encountered in fish muscle tissue during the fermentation

process (Beddows, 1998).

The interest of consumers for fermented fish products is primarily due to

the specific flavor generated which can induce appetite. In the case of

Indonesia, a variety of flavors produced by fermented fish products can

actually satisfy the tastes of consumers outside the area of origin of the

product. Unfortunately most of fermented fish products are still local and

not so easily found nationwide. Only some types of fermented fish products

have been widely known, such as fish sauce and shrimp paste (Irianto, 2012).

The ones contributing the most in flavor formation and the changes in

texture in fermented fish products are enzymes. Besides enzymes, microor-

ganisms that contribute to the fermentation process also assist in the forma-

tion of aroma and flavor (Beddows, 1998). Many researchers from around

the world have already explored the enzymes in fermented fish products

and pay attention to uncover their role in the fermentation process.

2. ENZYMES IN FISH

Naturally, fish contains enzymes which are distributed in the whole

body of the fish. The blood, certain tissues, muscles, and glands, such as kid-

ney, contain very active enzymes (Marsh & Flick, 2012). Enzyme action
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often causes significant deteriorative changes prior to noticeable spoilage of

bacterial origin (Ghaly, Dave, Budge, & Brooks, 2010). Autolytic enzymes

are present at much higher concentration in the viscera and head than in

other tissues (Owens & Mendoza, 1985). During rigor mortis, the acidity

of the tissues decidedly increases and this change of the hydrogen ion con-

centration causes an acceleration of autolytic decomposition. Enzymes are

most active in dilute solution and do not act in the absence of water. Most

of them are destroyed or rendered inactive by concentrated salt solution

(Gildberg et al., 2000; Ponce de Leon Valdivia, 1994).

The proteolytic activity is mainly caused by tissue proteases and, to a

lesser degree, by gut proteases (Lindgren & Pleje, 1983). Based on the mode

of catalysis, proteolytic enzymes from the fish may be classified into:

(a) aspartic proteases (pepsin and cathepsin D); (b) serine proteases (trypsin

and chymotrypsin); (c) cysteine proteases (calpain, m-calpain, and cathepsins

B, H, L); and (d) metalloprotease (Sriket, 2014). Aspartic and alkaline pro-

teases have been found from the viscera and stomach of sardine (Bougatef,

Souissi, Fakhfakh, Ellouz-Triki, & Nasri, 2007; Khaled et al., 2011; Salazar-

Leyva et al., 2013).

Klomklao (2008) proposed proteases to be classified on the basis

of their similarity to well-characterized proteases, such as trypsin-like,

chymotrypsin-like, chymosin-like, or cathepsin-like. Trypsins play major

roles in biological processes including digestion, activation of zymogens

of chymotrypsin, and other enzymes (Cao, Osatomi, Hara, & Ishihara,

2000). Serine collagenases or trypsin-like proteinase were found in the intes-

tines of Atlantic cod, Gadus morhua (Hernandez-Herrero, Duflos, Malle, &

Bouquelet, 2003), and king crab, Paralithodes camtschaticus (Rudenskaya,

Kislitsin, & Rebrikov, 2004). Chymotrypsin was isolated from the hepato-

pancreas of Chinese shrimp, Fenneropenaeus chinensis (Shi, Zhao, & Wang,

2008). Chymosin has been isolated and identified from carp and harp seal

stomach (Shahidi & Kamil, 2001). Cathepsins also known as lysosomal cys-

teine proteases, playing an important role in many physiological processes

including protein degradation, are mostly active at weakly acid pH values

(pH 5). Cathepsins B, C, H, L, and S have been extracted from fish and shell-

fish muscles to be the major proteases involved in intracellular protein break-

down (Aoki, Ahsan, & Watabe, 2004; Pangkey et al., 2000). Cathepsin

D shows some activity in the lowest pH range, predominating postmortem

in some fish. The activity of cathepsin D was detected in red or white fish

muscle among 24 species, and no difference was found between red- and

white-flesh fish, or freshwater fish (Aoki, Yamashita, & Ueno, 2000).
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A study on digestive enzymes conducted by Langeland, Lindberg, and

Lundh (2013) proved that the high lipase and protease activity and low car-

bohydrase activity in Eurasian perch (Perca fluviatilis) and Arctic charr

(Salvelinus alpinus) can be linked to their feeding habits. Total carbohydrase

activity was higher in Eurasian perch than in Arctic charr, which had a

higher total chymotrypsin activity and lipase activity in the mid-intestine.

The study suggests that feed formulation should be different for Eurasian

perch and Arctic charr in order to match their inherent digestive enzyme

activities. This relates specifically to the carbohydrate content and compo-

sition of the feed. Based on the observed α-amylase and carbohydrase activ-

ities, the carbohydrate content, particularly starch, can be higher in feed for

Eurasian perch than in feed for Arctic charr.

In fish, the levels of digestive enzymes may be influenced by type of feed-

ing (Hofer & Schiemer, 1981), the age of the fish (Il’ina & Turetskiy, 1988),

season and/or temperature of acclimatization (Kuz’mina, 1991), and so on.

Additionally, heavily feeding fish will generally deteriorate rapidly because

the enzyme concentration is often higher in the digestive tract of the fish

during feeding. The effect of season on enzyme activity varies with the

spawning cycle, water temperature, feeding cycle, and other variables

(Wheaton & Lawson, 1985). The activity and thermal stability of fish

enzymes vary from one species to another. For example, the activity and

thermal stability of tryptic enzymes from horse mackerel (Trachurus

mediterraneus ponticus) are greater than those from sprat (Sprattus nostamus).

The pepsin from plaice (Pleuronectes platessa) is 10 times more active than that

from horse mackerel. Generally, white fish have less proteolytic activity than

do pelagic species (Mackie, Hardy, & Hobbs, 1971).

The presence of active proteases in muscle and digestive organ, partic-

ularly proteolytic and collagenolytic enzymes, makes the flesh fish and shell-

fish prone to degrade especially during storage in ice, since the digestive

organ is not practically removed prior to storage. That occurrence leads

to the muscle softening or mushiness of fish and shellfish during storage

or distribution. During storage of fish and shellfish, the intensive hydrolysis

of myofibrillar and collagenous proteins by proteases was noted. To lower

the muscle degradation, different pretreatment methods as well as protease

inhibitors have been applied in the stored fish and shellfish. The use of nat-

ural serine or trypsin inhibitors is a better way to retard such a textural prob-

lem of fish species (Sriket, 2014).

Biochemical properties of trypsin purified from the digestive system of

carp Catla catla had a similarity with trypsin from other fishes. Stability at

high pH and low temperature indicates the potential application of this
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protease in detergent and in the food industry. Enzymes extracted from the

fish viscera may be used in the food processing industry, thus making ben-

eficial and productive use of the fish processing wastes (Khangembam,

Sharma, & Chakrabarti, 2012).

Each type of fish protease extracted from the visceral waste of different

fish species had a distinct optimum alkaline pH, temperature, and molecular

weight. The crude enzyme from the visceral waste of the Red snapper and

Great barracuda can be used to remove the blood stains effectively within

20 min, without the usage of any detergents. It was also observed that the

enzyme dehaired the goat hide after 22 h of incubation, without the addition

of sodium sulfide. The direct applicability of the crude extract without

downstream processing would make its use acceptable as a substitute for

the commercial ones (Sabtecha, Jayapriya, & Tamilselvi, 2014).

Atlantic cod as a poikilothermal organism lives in relatively frigid water;

thus, it can be predicted that its enzymes are classified as cold active enzymes.

Several of these enzymes have been demonstrated to be cold active, includ-

ing elastase, collagenase, and chymotrypsin. The enzyme activity at low

temperatures is helpful in various food processing applications where prote-

olysis must be performed at low temperature, such as in caviar production

and carotenoprotein extraction (Vilhelmsson, 1991).

Fish also contains transglutaminase, playing an important function in

surimi production. The role of transglutaminase in surimi production is

in the formation of ε-(γ-glutamyl) lysine bonds in the fish protein to pro-

duce a high-quality gel. The activity of endogenous fish transglutaminase

decreases rapidly after catch, and is almost completely destroyed by freezing

(Vilhelmsson, 1991).

3. ENZYMES IN FERMENTED FISH

Proteases play an important role in the production of fermented fish

product, particularly during fermentation process to obtain an acceptable

product quality. Chadong, Yunchalard, and Piyatheerawong (2015)

demonstrated fish protein degradation and peptide formation throughout

fermentation process of Plaa-som, a traditional fermented fish product

from Thailand, due to proteolysis. Proteolysis of Plaa-som occurred

under fermentation at 30°C because protein concentration was contin-

ually reduced to 8.52 mg/g after 120 h of fermentation. This fact was also

supported by the increase of peptide content to 1.95 μmol/g during

fermentation.
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Fermentation process of fish relies both on naturally occurring enzymes

(in the muscle or the intestinal tract) as well as those enzymes from bacteria.

In general, the former is most considerable with respect to changing texture

as well as producing some of the flavor, and the latter contributes to the

development of aroma and flavor (Skåra et al., 2015). In some cases, com-

mercial enzymes are also supplemented for specific purposes, such as quality

improvement and process acceleration.

3.1 Endogenous Fish Enzymes
As discussed above, various proteolytic enzymes are found in viscera, diges-

tive tract, and muscle tissue of fish.

Major endogenous proteinases in anchovies were trypsin-like proteinase,

pepsin, chymotrypsin, elastase, and aminopeptidase (Martinez & Serra,

1989; Siringan, Raksakulthai, & Yongsawatdigul, 2006). Digestive enzymes

of trypsin, chymotrypsin, and pepsin are considered as the three of more

important enzymes compared to others (de la Parra, Rosas, Lazo, &

Viana, 2007). Pepsin is usually found in the stomach of fish and is a main

enzyme of the digestive juices (de la Parra et al., 2007). Trypsin is present

in viscera, pyloric caeca, and spleen (Kishimura, Hayashi, Miyashita, &

Nonami, 2005, 2006; Kishimura et al., 2007; Klomklao et al., 2006). Hepa-

topancreas of fish and shellfish digestive organs contains both peptidase and

proteinase activities such as aminopeptidase, gelatinolytic proteases, trypsin

and chymotrypsin, and collagenolytic proteases (Sriket, 2014).

It was found that most of lipolysis and proteolysis activities in peda

processing were recorded in the gut, especially at the beginning of the fer-

mentation process; however, the activities fell rapidly during the process

(Irianto, 1990). In view that enzymes are found in viscera and digestive tract,

evisceration plays an important role in determining the rate and type of

enzymatic degradation occurring. Fermented fish products processed using

the whole fish will have different characteristic than those manufactured

from headed and gutted fish (Wheaton & Lawson, 1985). The enzymatic

activity of most visceral and digestive tract enzymes from fish had the greatest

activity at near neutral pH values (Bougatef et al., 2007; Munilla-Moran &

Saborido-Rey, 1996).

Castillo-Yañez, Pacheco-Aguilar, Garcia-Carreño, and Toro (2004) iso-

lated an acid proteolytic enzyme, which belongs to the aspartic protease class

from the viscera of sardines. The enzyme is similar to pepsin II from other

fish species and is stable at pH 3–6 and 45°C.
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The pyloric caeca represent the organs which are the major source of

alkaline proteinases. A trypsin-like enzyme obtained from the pyloric caeca

of cod (G. morhua) had an isoelectric point of 5.30 and 5.89 and was very

similar in amino acid composition to bovine trypsin, but differed in having

a higher relative amount of acidic amino acids and a lower amount of basic

amino acids. The enzyme also hydrolyzed fish protein substrates (Beirão,

Mackie, Teixeira, & Damian, 2001).

Three alkaline proteinases and two acid proteinases were isolated from

sardine. Each of the alkaline proteinases hydrolyzed casein more rapidly than

other proteins. A major alkaline proteinase (III) hydrolyzed sarcoplasmic

proteins from sardine five times faster than other alkaline proteinases. Each

of two acid proteinases hydrolyzed hemoglobin and myoglobin more rap-

idly than the other proteins. After preincubation with 25%NaCl, an alkaline

proteinase (III) and an acid proteinase (II) were stable although the other

proteinases became unstable. The two proteinases, alkaline proteinase III

and acid proteinase II, were also stable for 3 months after the beginning

of fish sauce production. The proteolytic activity of each of alkaline and

the acid proteinases was strongly inhibited by more than 15% NaCl; how-

ever, minimum inhibition was observed when sardine muscle proteins were

used as substrate (Noda, Van, Kusakabe, & Murakami, 1982).

Two aminopeptidases (I and II) were extracted from defatted internal

organs of sardine and purified using DEAE-cellulose chromatography, gel

filtration on Sephadex G-200, and isoelectric focusing. The final prepara-

tions of enzymes I and II were judged nearly homogenous by polyacryl-

amide gel electrophoresis. The molecular weights of enzymes I and II

were determined by gel filtration to be 370,000 and 320,000, respectively.

The isoelectric points were 4.1 (I) and 4.8 (II), respectively. Both enzymes

were inhibited by EDTA and activated by Co++. Bestatin could inhibit

enzyme I but not enzyme II. Enzymes I and II rapidly hydrolyzed not only

synthetic substrates containing alanine or leucine but also di-, tri-, and tetra-

alanine. Based on all of these characteristics, sardine aminopeptidases resem-

ble human alanine aminopeptidase. Enzyme I retained more than 70% of its

original activity in 15% NaCl, suggesting the enzyme participates in hydro-

lyzing fish proteins and peptides during fish sauce production (Vo Van,

Kusakabe, & Murakami, 1983).

Activities of alkaline and acid proteinases were compared with bovine

trypsin and pepsin and showed that like bovine trypsin the alkaline protein-

ase from sardines pyloric caeca hydrolyzed casein more effectively than other

protein substrates (Noda et al., 1982).
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Muscle tissue enzymes, particularly cathepsins, peptidases, transaminases,

amidases, amino acid decarboxylases, glutamic dehydrogenases, and related

enzymes, are all found in fish muscle tissue (Chaveesuk, 1991), and these

enzymes, particularly trypsin, chymotrypsin, and cathepsin, involve in the

protein hydrolysis during fish sauce fermentation (Fernandes, 2016). Muscle

tissue enzymes are mostly located in the cells. On the other hand, digestive

enzymes are exocellular secretion. Even though some studies showed that

muscle tissue enzymes have an optimum activity at neutral pH, most reports

inform that low pH values accelerate muscle tissue enzyme activities. Most

fermented fish products are processed at pH above 4, except for fish silage

and some fermented fish products. Accordingly, most muscle tissue enzymes

are actually not at optimum pH condition (Mackie et al., 1971).

Partial characterization of cathepsins B from the muscle of horse mack-

erel indicated similar characteristics with other cathepsin BS. The optimum

pH of the cathepsin was 5 with optimum temperature of 50°C. The activity
was inhibited by E-64, CA-074, and chymostatin (Yoshida et al., 2015).

Maximum enzyme activities can be achieved by using whole fish includ-

ing heads and viscera. On the contrary, minimum enzyme activity will occur

when deheaded and gutted fish are used to produce fermented fish products.

Meanwhile, intermediate enzyme activities can be obtained by removing

the guts anytime after the fish are caught to allow some diffusion of visceral

enzymes into tissues (Owens & Mendoza, 1985).

In salted fish, the ripening is described by three hypotheses. These are (1)

microbiological theory, (2) autolytic theory, and (3) enzymes theory. In

microbiological theory, the microorganisms produce the essential active

enzymes, and these enzymes penetrate into the flesh and contribute to rip-

ening process. The autolytic theory describes that ripening is a result of the

activity of enzymes of the muscles or other tissues, or of the gastrointestinal

tract. Finally, the enzyme theory explains the ripening of salted fish as taking

place under the influence of certain enzymes, namely, those contained in the

muscle tissue, those in the intestinal body organs of the fish, together with

those produced by microorganisms (Mackie et al., 1971).

In the maturing of anchovies, maximum autolytic activity of Indian

anchovy (Stolephorus indicus) was found at 60°C. Autolytic activity decreased
with increased NaCl concentration. Crude extract exhibited an optimum

pH at 8.5–9.5. Trypsin-like proteinases were the predominant proteinases

in the crude extract. Proteinases from Indian anchovy could participate in

protein hydrolysis during fish sauce fermentation. Therefore, incubation

of Indian anchovy at 60°C and in 10% NaCl for a period of time before full
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salting at 25% NaCl could be an effective way to accelerate the fish sauce

fermentation process (Siringan et al., 2006).

3.2 Microbial Enzymes
Fermentation of fish is brought about by autolytic enzymes from fish and

microorganisms in the presence of salt. The use of salt in fresh fish preser-

vation is as selective microbial agent (Anihouvi, Kindossi, & Hounhouigan,

2012; Majumdar & Basu, 2010).

There are two categories of fermented fish products. They are (1) prod-

uct preservation primarily by water activity reduction (fish/salt formulation)

and (2) product preservation by combinedwater activity reduction and lactic

acid generation (fish/salt/carbohydrate formulation) (Adam, Cooke, &

Rattapol, 1985). During salting, genus Micrococcus is predominant and its

proportion increases gradually from 40% to approximately 90% of the total

numbers. Simultaneously an appreciable reduction is observed in the other

genera which are named in the following order of importance:

Flavobacterium, Achromobacter, Pseudomonas, Bacillus, and Sarcina (Graikoski,

1973). The salting treatment reduces the water activity of fish from about

0.98 to about 0.70–0.75. At this water activity range, the only possibility

is the growth of halophilic bacteria, xerophilic molds, and osmophilic yeast

(Grant, 2004; Smith, 1989; Stevenson et al., 2015). Microbial load in fish

sauce made from gambusia (Affinis affinis) during processing decreased with

increased fermentation period, possibly caused by high concentration of salt

(Ibrahim, 2010). While similar phenomenon was noted, the growth of hal-

ophilic bacteria, lipolytic bacteria, proteolytic bacteria, and lactic acid bac-

teria in peda processing decreased during the first and second fermentation.

The bacteria probably contributed significantly only at the beginning of the

fermentation, since the number tended to decrease (Irianto, 1990). The role

of microorganisms in the fermentation process of fish is different from that in

fermented vegetable products. The high salt content of these products leaves

only salt-tolerant microorganisms to survive (Rose, 1982).

Microorganisms excrete proteolytic enzymes capable of degrading pro-

teins. Many types of microorganisms excrete proteolytic enzymes, including

the fungi Aspergillus oryzae, A. orizae, and Rhizopus sp.; the bacteria Bacillus

subtilis; the actinomycetes Streptomyces griseus; and the yeast Saccharomyces spp.

and Candida sp. (Gupta, Beg, Khan, & Chauhan, 2002; Mackie et al., 1971;

Oyeleke, Egwim, Oyewole, & John, 2012). Therefore, careful selection by

seeding or controlling the growth environment within the fermentation
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container enables the desired microbes to flourish and produce significant

quantities of proteolytic enzymes which help to hydrolyze the fish protein

(Wheaton & Lawson, 1985).

3.3 Enzymes Added to the Fermentation Process
The fermentation process in the production of traditional fermented fish

products is often found running slow, inconsistent product quality, and fre-

quently not as expected. Microorganisms producing enzymes require a long

adaptation period, particularly adjustment to environmental conditions with

high salt content. However, the process acceleration, consistent product

quality guarantee, and product quality improvement can be performed by

using enzymes addition during processing. The enzymes may be produced

from plant, animal, and microorganisms.

Several enzymes are extracted from plant, and those have been well rec-

ognized for their ability to tenderize meats. Commercial plant proteases such

as bioprase, pronase, molsin, protease AJ, papain, bromelain, and ficin have

all been investigated as enzyme supplements to speed up the rate of fish sauce

fermentation (Chaveesuk, 1991; Le et al., 2015; Ooshiro, Ok, Une,

Hayashi, & Itakura, 1981; Yongsawatdigul, Rodtong, & Raksakulthai,

2007). Bromelain found in pineapple juice, papain from papaya latex, and

ficin from figs are already well known (Wheaton & Lawson, 1985). Those

enzymes are quite heat stable and work optimally at near neutral pH (Mackie

et al., 1971).

Proteases which have been investigated to be used in processing fermented

fish products are extracted from A. oryzae (Man & Tuyet, 2006), moderately

halophilic marine bacterium Pseudomonas sp. (Nakano, Watanabe, Hata,

Qua, & Miura, 1986), and others. The most common commercial microbial

proteases are Alcalase®, Neutrase®, Protamex®, Flavourzyme®, and Kojizyme®

(Aristotelis, Himonides, Anthony, Taylor, & Morris, 2011; Nilsang, Lertsiri,

Suphantharika, & Assavanig, 2005; Yongsawatdigul et al., 2007).

Animal-derived enzymes are trypsin, pepsin, and pancreatin. Trypsin has

been extracted from digestive system of carp C. catla (Khangembam et al.,

2012). Fish pepsins have been purified and characterized in various types of

fishes including Arctic capelin, rainbow trout, Atlantic cod, bolti fish, Ant-

arctic rock cod, sea bream, African coelacanth, Mandarin fish, smooth

hound, orange-spotted grouper, albacore tuna, and European eel (Zhao,

Budge, Ghaly, Brooks, & Dave, 2011).
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4. ENZYMES IN FISH SAUCE PROCESSING

A fish sauce has attracted research scientists of all over the world to

explore the secrets behind its fermentation process. Fish sauce is not only

familiar for the people in Southeast Asia but also for those living in other

parts of the globe. Fish sauce is known as “kecap ikan” in Indonesia, “nam

pla” in Thailand, “patis” in Philippines, “shottsuru” in Japan, “nu€oc mâm”

in Vietnam, “budu” in Malaysia, “ngapi” in Myanmar, “pissala” in France,

“garos” in Greece, “colombo-cure” in Pakistan and India, “yeesu” in China,

and “aekjeot” in Korea. Fish sauce is manufactured through fermentation

process for 3–12 months, in which fish and salt are previously mixed thor-

oughly at a ratio of 1:3. After 4–6-month period, a liquid containing fish

extract is obtained in fermentation tanks. That liquid is actually fish sauce.

During fermentation process, fish tissue is gradually hydrolyzed, indicat-

ing the activity of proteolytic enzymes. The proteolytic enzymes responsible

for the protein degradation are either endogenous fish enzymes coming from

viscera or enzymes from microorganisms which may previously exist on or

in the fish prior to the salting period. Endogenous proteolytic enzymes of

fish originate from the digestive tract, internal organs, or muscle tissue

(Chaveesuk, 1991; Chayovan, Rao, Liuzzo, & Khan, 1983). However,

Orejana and Liston (1981) claimed that endogenous fish enzymes are the

major and perhaps sole agents responsible for digestion in the fish sauce pro-

cess. Fen, Sali, Ahmad, Tze, and Abdullah (2011) revealed similar finding

that the endogenous fish enzymes, especially from fish viscera, were the

main contributors of protease action during the initial days of fermentation.

In addition, bacterial enzymes may be involved in the later stage of

fermentation.

Digestive enzymes have a significant role in the fermentation of capelin

(Mallotus villosus) sauce, in view of the fact that the rate of protein

hydrolysis of whole fish was considerably higher than that of eviscerated

fish. Intracellular enzyme of cathepsin C was believed to contribute to pro-

teolysis in fish sauce and the formation of the delicious fish sauce taste

(Raksakulthai, 1987).

Quality improvement and fermentation process acceleration of fish sauce

can be carried out enzymatically through the use of papain (Anon, 1983;

Chuapoehuk & Raksakulthai, 1992), bromelain (Chuapoehuk &

Raksakulthai, 1992; Handayani, Ratnadewi, & Santoso, 2007; Subroto,
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Hutuely, Haerudin, & Purnomo, 1985), pepsin (Kumalaningsih, 1986),

trypsin and chymotrypsin (Chaveesuk, 1991), as well as trypsin and pepsin

(Kristianawati, Ibrahim, & Rianingsih, 2014).

Subroto et al. (1985) utilized pineapple juice as the source of bromelain

in the processing of fish sauce using by-catch fish as rawmaterial. Good qual-

ity fish sauce can be acquired by the use of pineapple extract as much as 8%

(v/w) with 10-h incubation period. Sangjindavong, Mookdasanit,

Wilaipun, Chuapoehuk, and Akkanvanitch (2009) used pineapple core

and pineapple peel for producing fish sauce from surimi waste.

Handayani et al. (2007) suggested using 15% NaCl to produce sardine

(Sardinella lemuru) sauce with the addition of crude protease extracted from

pineapple.

Use of crude papain has successfully improved quality and accelerated

fermentation process of fish sauce (Lopetcharat, Choi, Park, & Daeschel,

2001; Setyahadi, 2013). A better quality of fish sauce made from Sardinella

sp. as raw material was obtained by a combination of 12.5% salt and 1.5%

papain, producing a nitrogen conversion of 13.63%. The more the salt addi-

tion, the lower the protein degradation rate will be. Increasing papain

amount will induce higher nitrogen conversion rate and water-soluble pro-

tein degradation level in the liquid. High salt addition level seems to inhibit

enzyme activity. On the contrary, the reduction of salt addition level will

encourage the growth of microorganisms and generate undesirable odor

in the fish sauce. Increasing added papain amount promotes the formation

of nitrogen compounds, but results in a viscous material due to connective

tissue degradation (Anon, 1983).

Chuapoehuk and Raksakulthai (1992) prepared oyster sauce by hydro-

lyzing minced oyster meat using papain or bromelain supplemented with

20% sodium chloride. It was found that 0.7% papain or 0.3% bromelain pro-

duced the highest soluble nitrogen in the hydrolysates and showed no sig-

nificant differences in proximate composition, pH, consistency, and sensory

evaluation scores.

Pepsin can be used for fish sauce processing in one condition that the pH

of fish is brought down into optimum pH for pepsin activity, i.e., pH 2. Salt

amount of 15% is considered suitable for generating an optimum condition

in preventing the growth of putrefactive bacteria (Kumalaningsih, 1986).

The use of trypsin and chymotrypsin to accelerate the rate of fish sauce

fermentation processed from herring (Clupea harengus) increased signifi-

cantly the rate of proteolysis and the amounts of total nitrogen, formol nitro-

gen, and free amino acids in the fish sauce product. Fermentation period was
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also reduced from 6–12 to 2 months. A significant increase in total nitrogen

and free amino acid contents in the end products was observed when

enzyme concentration was increased from 0.3% to 0.6%. Supplementation

with 0.6% of 25:75 trypsin:chymotrypsin showed the most satisfactory

results in terms of total nitrogen, formol nitrogen, and free amino acid con-

tents. The lighter color of herring sauce produced with 0.6% enzyme sup-

plement was preferred to the darker color of the first grade commercially

produced fish sauce. There was no significant difference in the preference

for aroma and flavor among enzyme-supplemented sauces and the first-

grade commercially produced fish sauce (Chaveesuk, 1991).

Acceleration of fish sauce fermentation process was carried out by

Kristianawati et al. (2014) by employing proteolytic enzyme addition and

salt level reduction with marine catfish viscera as raw material. The addition

of trypsin and pepsin with the concentration of 0.3% produced fish sauce

with significantly higher yield and enzyme activity values, as well as better

sensory performance. The most organoleptically acceptable fish sauce was

obtained through processing with 0.3% trypsin, 20% salt addition, and

45-day fermentation period.

Ooshiro et al. (1981) examining papain, bromelain, and trypsin for the

production of fish sauce from sardines revealed that papain was the most

effective for proteolysis. Fermentation with 0.3% papain at 37°C without

adjusting initial pH was the best condition for maximum proteolysis.

Manufacturing fish sauce from anchovy fish using purified protease from

A. oryzaewas investigated byMan and Tuyet (2006). The application of that

protease with a suitable procedure of salt addition in fish sauce processing

accelerated fish proteolysis and increased the free amino nitrogen content.

It should be taken into consideration that high salt content (25%) in the

fish–salt mixture decreased the enzyme activity.

5. CONCLUDING REMARKS

Fermented fish products play an important role in daily life of many

countries. These products are consumed in small amount, but can give a taste

sensation-promoting appetite for eating. Endogenous fish proteases, partic-

ularly the ones coming from digestive tracts, are suspected as the main

enzymes contributing in degrading protein during fermentation process.

Eviscerating by removing the gut is not recommended if faster fermentation

to be achieved. Microorganisms through excreting proteases seem to take

part in the processing of fermented fish mainly either at the beginning of
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the process or prior to the fish receiving salting treatment. In order to obtain

optimum involvement of microorganisms in the production of fermented

fish, manipulation of the environment to facilitate the most suitable condi-

tions for the growth of microorganisms should be performed.

The fermentation process with correct proteolysis is needed to guarantee

a good quality product, but this usually requires a long fermentation period,

even up to a year. Economically, the shorter fermentation process is more

profitable. Therefore, the accelerated processing by enzymes addition has a

good prospect as long as the quality of the product is comparable with that

obtained without employing enzymes. Intensive studies have been carried

out to accelerate fermentation process of fish sauce using the addition of var-

ious enzymes manufactured from plants, animals, and microorganisms.

Processing acceleration for other fermented products than fish sauce by

involving enzyme supplementation is encouraged to be done. Manipulation

of fermentation environment to achieve optimum enzyme activities and

microorganism growths for speeding up the processing rate of fermented fish

products is recommended.
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