Bidang Kajian : Teknik Lingkungan

LAPORAN PENELITIAN DOSEN UNIVERSITAS SAHID JAKARTA

PENGEMBANGAN TAMAN BURUNG DAN TAMAN APOTIK SEBAGAI DAYA TARIK EKOWISATA DI TMII

Peneliti:

Tatan Sukwika, SP., M.Si NIDN: 0310097407

FAKULTAS TEKNIK 2016

HALAMAN PENGESAHAN

PENELITIAN DOSEN UNIVERSITAS SAHID JAKARTA

Judul Penelitian Pengembangan Taman Burung sebagai Daya Tarik

Ekowisata di TMII

Rumpun Ilmu Ilmu Lingkungan

Ketua Peneliti:

a. Nama Tatan Sukwika, SP.M.Si

b. NIDN 0310097407

c. Jabatang Fungsional Asisten Ahli

d. Jabatan Struktural

e. Program Studi Teknik Lingkungan

f. Alamat e-mail g. Nomor HP

Anggota Peneliti:

a. Nama

b. NIDN

c. Jabatang Fungsionald. Jabatan Struktural

e. Program Studi Teknik Lingkungan

f. Alamat e-mail

g. Nomor HP

Biaya Total diusulkan:

a. Usahid Rp. 4.000.000

b. Sumber lain

Waktu Penelitian 8 bulan

Lokasi Penelitian

Jumlah Mahasiswa terlibat 1 orang

Jakarta, 10 Oktober 2016.

Dekan

Mengetahui,

(Ir.Farhat Umar, MSi

NIK: 19910142

Ketua Penelitian,

(Tatan Sukwika, SP.M.Si)

NIDN: 0310097407

Menyetujui, Kepala LPPM

of Dr. Ir. Giyatmi, M.Si

NIK : 19940236

DAFTAR ISI

DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN RINGKASAN

BAB 1	PENDAHULUAN	1		
	1.1. Latar Belakang	1		
	1.2. Perumusan Masalah	4		
	1.3. Tujuan Penelitian	5		
	1.4. Ruang Lingkup Penelitian	5		
BAB 2	TINJAUAN PUSTAKA	ϵ		
	2.1. Museum dan Bangunan Gedung	6		
	2.2. Kebakaran	10		
	2.3. Penyebab dan Sumber Kebakaran	15		
	2.4. Pencegahan dan Penanggulangan Kebakaran	17		
	2.5. Sistem Proteksi Kebakaran	18		
BAB 3	METODE PELAKSANAAN	49		
	3.1. Lokasi Penelitian	49		
	3.2.Teknik Pengambilan Data	49		
	3.3. Rancangan Penelitian	50		
	3.4. Analisis	51		
	3.5. Diagram Alur Penelitian	53		
BAB 4.	HASIL DAN PEMBAHASAN	54		
	4.1. Museum Penerangan	54		
	4.2. Pengolahan Data Keandalan Sistem Bangunan	67		
	4.3. Pembahasan	94		
BAB 5.	KESIMPULAN DAN SARAN	97		
	5.1. Kesimpulan	97		
	5.2. Saran	97		
DAFTA	R PUSTAKA	99		
LAMPIRAN-LAMPIRAN 10				

DAFTAR TABEL

1	Klasifikasi Bahaya dan Media Pemadama Berdasarkan Peraturan	Menteri
	Tenaga Kerja (Permen No.04/PER/MEN/1980)	14
2.	Klasifikasi Jenis Apar	23
3.	Penilaian Tingkat Keandalan Bangunan terhadap Kebakaran	28
4.	Hasil Pembobotan Keandalan Sistem Kebakaran Bangunan	29
5.	Penilaian Komponen Parameter Kelengkapan Tapak	29
6.	Penilaian Komponen Parameter Sarana Penyelamatan	30
7.	Penjelasan Penilaian Komponen Parameter Sarana Penyelamatan	30
8.	Penilaian Komponen Parameter Proteksi Aktif	33
9.	Penjelasan Penilaian Komponen Parameter Proteksi Aktif	34
10.	Penilaian Komponen Parameter Proteksi Pasif	43
11.	Penjelasan Penilaian Komponen Parameter Proteksi Pasif	44
12.	Pokok-pokok Rekomendasi	47
13.	Komponen Kelengkapan Tapak	65
14.	Komponen Sarana Penyelamatan	66
15.	Komponen Proteksi Aktif	66
16.	Komponen Proteksi Pasif	67
17.	Penilaian Kelengkapan Tapak	67
18.	Hasil penilaian komponen parameter kelengkapan tapak (bobot 25%)	68
19.	Penilaian sarana penyelamatan (bobot: 25%)	71
20.	Hasil penilaian parameter sarana penyelamatan (bobot 25%)	72
21.	Penilaian Proteksi Aktif	76
22.	Hasil Penilaian Proteksi Aktif (bobot 25%)	77
23.	Penilaian Proteksi Pasif	90
24.	Hasil penilaian komponen proteksi pasif (bobot 26%)	91
25.	Total Penilaian Tingkat Keandalan Sistem Keselamatan Bagunan	94

DAFTAR GAMBAR

1	Segitiga Api	12
2	Proses Pembentukan Api dan Kebakaran dalam Ruangan	13
3	Panel Control Utama	19
4	Manual Call Box	19
5	Fire Detector Api	20
6	Sistem Hidran	21
7	Contoh Sistem Pemercik (Spirinkler) Otomatis	22
8	Jenis-Jenis Alat Pemadam Api Ringan (APAR)	23
9	Diagram Alir Penelitian	53
10	Denah Umum Museum Penerangan	56
11	Denah Lantai 1	57
12	Denah Lantai 2	57
13	Denah Lantai 3	58
14	Pohon Kehidupan	59
15	Proyektor film Kamera Perekam "Rapat Kabinet RI Pertama"	59
16	Kamera Peremkam Rapat Kabinet RI Pertama	60
17	Mesin Setting	60
18	Relief Sejarah Komunikasi	61
19	Studio Mini RRI (Radio Republik Indonesia)	62
20	Studio Mini TVRI (Televisi Republik Indonesia)	62
21	Hidran Gedung	64
22	APAR	64
23	Tangga darurat	64
24	Hidran	64

DAFTAR LAMPIRAN

- 1
- 2
- Biodata ketua dan anggota tim pengusul Justifikasi Anggaran Surat Pernyataan Penyandang Dana Selain USAHID (bila ada) 3

RINGKASAN

Wisata merupakan kegiatan yang tidak terlepas dari kehidupan manusia yang dilakukan tidak hanya untuk sekedar melepaskan lelah pikiran dan fisik tetapi juga menambah wawasan seseorang. Museum Penerangan dapat dijadikan salah satu objek wisata yang dikunjungi untuk menambah wawasan terhadap sejarah perkembangan penerangan di Indonesia. Museum Penerangan memiliki sistem proteksi kebakaran, namun perlu diketahui keandalannya sehingga penelitian ini dilakukan untuk mengetahui keandalan sistem keselamatan bangunan (KSKB) terhadap potensi bahaya kebakaran. Variabel keandalan sistem keselamatan gedung yang digunakan dalam penelitian ini adalah kelengkapan tapak, sarana penyelamatan, sistem proteksi aktif, sistem proteksi pasif. Dari hasil penelitian diperoleh nilai keandalan sistem keselamatan gedung (NKSKB) terhadap potensi bahaya kebakaran adalah 68,9895 yaitu cukup (C) yang berarti peralatan proteksi kebakaran yang terpasang ada sebagian tetapi tidak sesuai dengan persyaratan yang nilai keandalan seharusunya memiliki nilai minimum 80 atau baik (B). Rekomendasi yang diberikan bagi pengelola museum penerangan diharuskan ada penambahan atau perbaikan terhadap komponen-komponen yang masih kurang sehingga gedung tersebut memiliki tingkat keandalan yang baik terhadap potensi kebakaran.

Kata Kunci: Wisata, museum, potensi bahaya kebakaran, keandalan siststem keselamatan bangunan, proteksi kebakaran aktif, proteksi kebakaran pasif.

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Parawisata adalah kegiatan yang melibatkan banyak manusia yang memiliki dampak positif, salah satunya dampak positifnya adalah tumbuh berbagai kegiatan usaha dan meningkatkan perekonomian pada kawasan wisata. Wisata merupakan perjalanan yang dilakukan oleh seseorang atau sekelompok orang yang datang dari daerah asal kemudian ada saatnya berhenti di daerah transit hingga sampai pada daerah tujuan. Daerah wisata merupakan kawasan yang memiliki daya tarik yang menawarkan, mulai keindahan alam yang terbentuk secara alami, maupun buatan manusia dan juga informasi tentang sejarah. Karena tempat atau kawasan wisata terdapat banyak kegiatan dan melibatkan banyak manusia tentu akan yang menjadi perthatian adalah terjaminnya keamanan dan keselamatan dari potensi-potensi bahaya yang ada.

Lokasi wisata yang aman merupakan suatu pertimbangan bagi pengunjung yang akan datang tertutama yang berwista bersama keluarga. Tidak hanya dari segi estetika, wahana maupun atraksi yang ditawarkan namun, pihak pengelola juga seharus dapat membuat pengunjung merasa aman dengan adanya suatu sistem yang terintegrasi dalam pengelolaan tempat wisata terkhusus terhadap bahaya kebakaran yang dapat terjadi terjadi pada suatu waktu.

Bahaya potensi Kebakaran yang timbul di kawasan wisata juga harus menjadi perhatian khusus pengelola kawasan wisata. Di tempat wahana misalnya yang banyak menggunakan aliran arus listrik dalam pengoperasiannya tentu hal ini merupakan suatu potensi kebakaran yang dapat timbul kapan saja sehingga membahayakan para penujunjung terutama pada saat menggunakan wahana tersebut. Tempat wisata berada *indoor* maupun *outdoor* bahaya kebakaran dapat timbul sebagai ancaman yang dapat menggangu kegiatan berwisata dan hilangnya keindahan tempat wisata tersebut.

Jaminan keamanan harus menjadi hal pokok dari pengelola, termasuk akan keamanan akan bahaya kebakaran. Jika hal ini kurang mendapat perhatian dari

pengelola maka akan menurunkan daya tarik wisatawan yang akan berkujung serta reputasi akan berkurang. Bebarapa kasus kebarakan dibawah ini menimbulkan buruk reputasinya adalah:

- a. Terjadinya kebakaran pada Wisma Kosgoro jalan MH Tamrin, Jakarta Pusat oleh Pemberitaan media online CNN Indonesia tertanggal Senin, 9 Maret 2015, yang memberitakan bahwa hidran di sekitar lokasi tidak dapat digunakan karena airnya sangat kecil dan jalur air hidran itu tergabung dengan air masyarakat. Tidak hanya itu, alarm kebakaran tidak berbunyi, dan lift kebarakan juga tidak aktif sehingga menyulitkan petugas pemadam kebakaran untuk menghentikan penyebaran api. Buruknya sistem proteksi kebaran ini membawa reputasi tidak baik terhadap pengelola Wisma Kosgoro sehingga akan berdampak pada penurunan jumlah penyewa Wisma Kosgoro.
- b. Terjadinya ledakan di taman hiburan Taiwan, ratusan orang terluka diberitakan oleh media *online* BBC.com tertanggal 28 Juni 2015. Insiden terjadi di panggung utama sebuah taman hiburan karena sebuah bubuk yang mudah terbakar di yakini sebagai penyebab utama ledakan. Lebih dari 180 orang mengalami luka serius, sementara lainnya mengalami luka ringan akibat menghirup bubuk sehingga menyebabkan sulit bernapas. Wartawan BBC di Taipei, Cindy Sui mengatakan, Pejabat setempat menyakini bahwa sumber api menyebabkan bubuk berwarna yang digunakan untuk permainan semprotan dalam pesta meledak. Peristiwa ini membuat pengunjung akan berkurang atau tidak mau datang ke taman hiburan Taiwan karena kurang perhatian pengelola terhadap bahaya kebaran.
- c. 10 orang tewas terbakar di tempat wisata Irlandia (berita *online* 10 Oktober 2015) termasuk lima anak-anak ketika api menghanguskan tempat wisata wisata *Carrickmine* di selatan Dublin, Irlandia yang penyebab kebakaran tidak disebutkan dalam berita tersebut. Jika bencana kebakaran sering terjadi pada kawasan wisata tentu hal ini dapat mengurangi daya tarik wisata yang berdampak pada penurunan pengunjung yang pada akhirnya kegiatan perekonomian juga mengalami penurunan.

Dari beberapa kasus kebakaran yang terjadi diatas, kawasan wisata membuktikan bahwa pentingnya suatu sistem proteksi kebakaran dan adanya tidakan preventif dari pihak pengelola kawasan wisata. Selain itu diharapkan bagi pengunjung harus menjaga lingkungan yang dikunjunginnya, sebagai pengunjung tidak boleh bersikap tidak peduli dan tidak bertanggung jawab.

Keandalan sistem proteksi kebakaran pada kawasan wisata haruslah menjadi perhatian utama sehingga keamanan dan keselamatan tercipta dengan baik khusus untuk bangunan-bangunan yang dilindungi dengan saran proteksi kebakaran yang memenuhi persyaratan.

Kebakaran merupakan suatu proses yang sangat komplek. Pembakaran merupakan proses eksotermis atau proses melepaskan energi panas yaitu suatu reaksi oksidasi yang melibatkan bahan bakar pada, panas dan udara yang berlangsung sangat cepat yang melepaskan panas dan cahaya. Perbedaan api dengan kebakaran diantaranya adalah api di butuhkan manusia, sifatnya terkendali, dan menguntungkan sedangkan kebakaran sebaliknya tidak dibutuhkan manusia, tidak terkendali manusia dan menimbulkan merugikan. Kebakaran sering terjadi karena kelalaian manusia, api yang yang tadinya terkendali menjadi tidak terkendali karena kurang awas terhadap bahaya lingkungan sekitar mengacam keselamatan jiwa dan kerugian materi. Pada saat terjadi kebakaran, yang menjadi perhatian berkaitan dengan bahaya api, yaitu manusia sebagai penghuni maupun pengunjung khusus tempat wisata, bangunan berserta isinya, dan bangunan yang letaknya bersebelahan.

Gedung atau ruangan tertutup yang menjadi tempat aktivitas manusia memiliki standar yang telah ditentukan Undang-Undang dan pertaturan yang terkait . Gedung museum merupakan suatu tempat wisata yang sering dikunjungi yang mempresentasikan suatu sejarah, peninggalan purba kala yang kemudian dikenalkan kepada pengunjung untuk memberikan pengetuhan. Museum dapat di jadikan salah satu tempat pilihan wisata sekaligus pendidikan bagi pelajar mulai dari tingkat taman kanak-kanak hingga berbagai tingkat jenjang pendidikan.

Museum Penerangan terdapat di Taman Mini Indonesia Indah yang merupakan tempat pariwisata bukan hanya untuk wisatan dari Jakarta saja tetapi Penerangan dapat di jadikan salah satu pilihan wisata edukasi yang menawarkan informasi dan pengembangan wawasan terkait sejarah penerangan yang sangat berperan dalam memperjuangan kemerdekaan Indonesia. Museum penerangan memiliki koleksi-koleksi penting dan bersejarah yang di jaga dengan baik diantaranya: kamera perekam pelantikan presiden RI, Jenderal Soeharto (1971), Alat perekam blank (piringan hitam) yang digunakan oleh RRI sejak tahun 1958, dan Radio Oemoem, 1940 bermerk Philips (Belanda) digunakan pada masa kependudukan Jepang (1942-1945) dimana semua radio memiliki penduduk disegel, dan hanya radiao oemoem saja yang boleh didengarkan. Radio ini dipasang di lokasi yang strategis walau hanya dapat mendengarkan siaran sentral pemerintah Jepang, namun pada akhirnya ikut mengumandangkan proklamasi kemerdekaan RI.

Indonesia memiliki banyak tempat bersejarah dan peninggalan budaya hal inilah tentunya banyak di dirikan museum yang mendasari perlunya perencanaan dan pengelolaan yang baik dalam pembangunan harus diperhatikan dari segi keindahan, kenyamanan, keamanan yang terkait hal ini misalnya, konstruksi dan material bangunan yang memiliki sifat tahan api, memiliki tata cara perencahanaan akses bangunanan dan akses lingkungan untuk pencegahan bahaya kebakaran pada bangunan gedung. Hal inilah yang menjadi dasar penelitian, dimana dilakukan evaluasi keandalan sistem proteksi kebakaran yang dilakukan di gedung museum penerangan sebagai salah satu tempat wisata.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang di paparkan diatas maka penelitian ini merumuskan masalah, adalah bagaimana keandalan sistem proteksi kebakaran pada gedung Museum Penerangan yang berada di kawasan wisata Taman Mini Indonesi Indah.

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk mengetahui keandalan sistem proteksi kebakaran pada gedung Museum Penerangan.

1.4 Batasan Masalah

Batasan penelitian yang akan dilakukan mencakup, diantaranya:

- Melakukan pengamatan pada gedung meseum terhadap proteksi kebakaran di Taman Mini Indonesia Indah
- b. Penelitian Keandalan Sistem Keselamatan Bangunan mengacu pada Peraturan Menteri PU No 26/PRT/M/2008 tentang Persyaratan Teknis Sistem Proteksi Kebakaran pada Bangunan Gedung dan Lingkungan serta Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung
- c. Penelitian ini tidak melakukan percobaan terhadap fungsi perlatatan sistem proteksi kebakaran pasif dan sistem proteksi kebakaran aktif
- d. Pengambilan data dilakukan berdasarkan wawancara, pengamatan dan studi pustaka.

.

1.5 Manfaat Penelitian

Dari penelitian yang dilakukan ini diharapkan memiliki manfaat sebagai berikut:

- Memberikan informasi keandalan sistem proteksi kebakaran pada gedung Museum Penerangan.
- 2. Memberikan saran atau usulan terhadap penerapan sistem proteksi kebakaran pada Museum Penerangan.
- 3. Memberikan tambahan informasi kepada penelitian lain terkait keandalan sistem keselamtan bangunan gedung.

BAB II LANDASAN TEORI

Wisata adalah kegiatan yang tidak terlepas dari kehidupan manusia. setiap orang butuh berwisata, hiburan dan bersentuhan dengan alam atau sesuatu yang dapat merilekskan tubuh dan pikiran. Menurut undang-undang RI No.10 tahun 2009 tentang kepariwisataan, mendefinisikan " wisata adalah kegiatan perjalanan yang dilakukan oleh seseorang atau sekelompok orang dengan mengunjungi tempat tertentu untuk tujuan rekreasi, pengembangan pribadi, atau mempelajari keunikan daya tarik wisata yang dikunjungi dalam jangka waktu sementara ". Berbagai kegiatan yang dilakukan di kawasan wisata serta di sungguhi berbagai atraksi sebagai daya tariknya kepada pengujung yang datang.

Di dukung berbagai fasilitas dan pelayanan, gedung atau wahana bermain didalam ruangan (*indoor*) atau di luar gedung (*outdoor*). Untuk meseum yang kebanyakan berada dalam sebuah gedung dimana didalamnya terdapat barangbarang peninggalan masa lampau dan bersejarah. Didalam gedung museum juga terdapat barang-barang yang terbuat dari kayu, kain, tembaga dan lain sebagainya. Kemudian dari sisi bangunan gedung museum beberapa bangunan sebagian atau keseluruahan terbuat dari kayu yang mudah terbakar.

2.1 Museum

Museum adalah cerminan dari sejarah kehidupan, yang terkait dengan budaya, peninggalan benda purba kala seperti fosil tumbuhan dan hewan serta sejarah suatu bangsa. Meseum merupakan salah satu tempat atau objek wisata yang patut untuk dikunjungi karena memberikan pengetahuan dan pemahaman kepada pengunjung. Selain keindah-keindahan yang ada didalamnya, museum juga akan membuat kita semakin cinta dan menghargai suatu proses perkembangan peradaban manusia dari zaman ke zaman baik itu sejarah bangsa, ilmu pengetahuan dan budaya.

2.2 Bangunan Gedung

Bangunan gedung adalah hasil dari pekerjaan konstruksi yang berwujud fisik yang di bangun pada suatu lokasi tertentu. Bangunan gedung dibangun di atas atau dan di dalam dan atau di air yang berfungsi sebagi tempat untuk kegiatan manusia dalam beraktifitas seperti bekerja. Untuk bangunan rumah dan pemukiman yang digunakan sebagai tempat tinggal bersama keluarga sekaligus tempat istriahat, bangunan tempat beribadah yang berfungsi untuk kegiatan keagamaan, bangunan untuk kegiatan sosial seperti balai pertemuan serta bangunan untuk kegiatan khusus lainnya.

2.2.1 Klasifikasi Bangunan

Berdasarkan Standar Nasional Indonesia (SNI 03-1735- 2000) tentang tata cara perencanaan akses bangunan dan akses lingkungan untuk pencegahan bahaya kebakaran pada bangunan gedung, bangunan dapat diklasifikasikan sebagai berikut .

- a. Kelas 1 : Bangunan hunian biasa
 - Satu atau lebih bangunan yang merupakan:
 - Kelas 1a: Bangunan hunian tunggal, berupa: Satu rumah tunggal; atau satu atau lebih bangunan hunian gandeng, yang masing-masing bangunannya dipisahkan dengan suatu dinding tahan api, termasuk rumah deret, rumah taman, unit town house, villa.
 - Kelas 1b: Rumah asrama/kost, rumah tamu, hostel, atau sejenisnya dengan luas total lantai kurang dari 300 m² dan tidak ditinggali lebih dari 12 orang secara tetap, dan tidak terletak di atas atau di bawah bangunan hunian lain atau bangunan kelas lain selain tempat garasi pribadi.
- b. Kelas 2: Bangunan hunian yang terdiri atas 2 atau lebih unit hunian, yang masing-masing merupakan tempat tinggal terpisah.
- c. Kelas 3 : Bangunan hunian di luar bangunan kelas 1 atau 2, yang umum digunakan sebagai tempat tinggal lama atau sementara oleh sejumlah orang yang tidak berhubungan, termasuk :
 - 1) Rumah asrama, rumah tamu, losmen; atau
 - 2) Bagian untuk tempat tinggal dari suatu hotel atau motel; atau

- 3) Bagian untuk tempat tinggal dari suatu sekolah; atau
- 4) Panti untuk orang berumur, cacat, atau anak-anak; atau
- 5) Bagian untuk tempat tinggal dari suatu bangunan perawatan kesehatan yang menampung karyawan-karyawannya.

d. Kelas 4: Bangunan hunian campuran

Tempat tinggal yang berada di dalam suatu bangunan kelas 5, 6, 7, 8, atau 9 dan merupakan tempat tinggal yang ada dalam bangunan tersebut.

e. Kelas 5 : Bangunan kantor

Bangunan gedung yang dipergunakan untuk tujuan-tujuan usaha profesional, pengurusan administrasi, atau usaha komersial, di luar bangunan kelas 6, 7, 8 atau 9.

f. Kelas 6: Bangunan perdagangan

Bangunan toko atau bangunan lain yang dipergunakan untuk tempat penjualan barang-barang secara eceran atau pelayanan kebutuhan langsung kepada masyarakat, termasuk :

- 1) Ruang makan, kafe, restoran; atau
- 2) Ruang makan malam, bar, toko atau kios sebagai bagian dari suatu hotel atau motel; atau
- 3) Tempat gunting rambut/salon, tempat cuci umum; atau
- 4) Pasar, ruang penjualan, ruang pamer, atau bengkel.

g. Kelas 7: Bangunan penyimpanan/gudang

Bangunan gedung yang dipergunakan penyimpanan, termasuk:

- 1) Tempat parkir umum; atau
- 2) Gudang, atau tempat pamer barang-barang produksi untuk dijual atau cuci gudang.

h. Kelas 8 : Bangunan laboratorium/industri/pabrik

Bangunan gedung laboratorium dan bangunan yang dipergunakan untuk tempat pemprosesan suatu produksi, perakitan, perubahan, perbaikan, pengepakan, *finishing*, atau pembersihan barang-barang produksi dalam rangka perdagangan atau penjualan.

i. Kelas 9: Bangunan umum

Bangunan gedung yang dipergunakan untuk melayani kebutuhan masyarakat umum, yaitu :

- 1) Kelas 9a : Bangunan perawatan kesehatan, termasuk bagian-bagian dari bangunan tersebut yang berupa laboratorium.
- 2) Kelas 9b: Bangunan pertemuan, termasuk bengkel kerja, laboratorium atau sejenisnya di sekolah dasar atau sekolah lanjutan, hal, bangunan peribadatan, bangunan budaya atau sejenis, tetapi tidak termasuk setiap bagian dari bangunan yang merupakan kelas lain.
- j. Kelas 10 : Bangunan atau struktur yang bukan hunian.
 - 1) Kelas 10a: Bangunan bukan hunian yang merupakan garasi pribadi carport, atau sejenisnya.
 - 2) Kelas 10b : Struktur yang berupa pagar, tonggak, antena, dinding penyangga atau dinding yang berdiri bebas, kolam renang, atau sejenisnya.

2.2.2 Bangunan-bangunan yang tidak diklasifikasikan khusus

Adalah bangunan atau bagian dari bangunan yang tidak termasuk dalam klasifikasi bangunan 1 sampai dengan 10 tersebut, dalam standar ini dimaksudkan dengan klasifikasi yang mendekati sesuai peruntukannya.

k. Bangunan yang penggunaannya insidentil

Bagian bangunan yang penggunaannya insidentil dan sepanjang tidak mengakibatkan gangguan pada bagian bangunan lainnya, dianggap memiliki klasifikasi yang sama dengan dengan bangunan utamanya.

1. Klasifikasi jamak

Bangunan dengan klasifikasi jamak adalah bila beberapa bagian dari bangunan harus diklasifikasikan secara terpisah, dan :

- Bila bagian bangunan yang memiliki fungsi berbeda tidak melebihi 10% dari luas lantai dari suatu tingkat bangunan, dan bukan laboratorium, klasifikasinya disamakan dengan klasifikasi utamanya;
- 2) Kelas 1a, 1b, 9a, 9b, 10a, dan 10b adalah klasifikasi yang terpisah;

3) Ruang-ruang pengolah, ruang mesin, ruang mesin lif, ruang ketel uap, atau sejenisnya diklasifikasikan sama dengan bagian bangunan dimana ruang tersebut terletak.

2.3 Kebakaran

2.3.1 Defini Kebakaran

Kebakaran merupakan bencana yang paling sering dihadapi manusia. Kebakaran sering terjadi pada pabrik atau kawasan perindustrian dan kawasan pemukiman yang padat penduduk yang bersumber dari hubungan arus pendek, ledakan kompor dan lain-lain. Kebakaran itu sendiri dapat disebabkan oleh manusia dan terjadinya secara alami. Kebakaran yang disebabkan oleh manusia dapat terjadi karena ketidak sengajaan dan juga dapat di sengaja oleh orang yang tidak bertanggung jawab dan memiliki tujuan tertentu. Kebakaran yang disebabkan karena ketidak sengajaan sering terjadi karena kelalaian manusia terhadap peraturan yang berlaku.

Kebakaran adalah suatu nyala api, baik kecil atau besar pada tempat, situasi dan waktu yang tidak di kehendaki dan pada umumnya sukar dikendalikan. Jadi, api memiliki perbedaan dengan kebakaran kalau api kehadirannya di kehendaki manusia, terkontrol dan bermanfaat sedangkan kebakaran kehadirannya tidak di kehendaki manusia, tidak terkontrol dan menyebabkan kerugian

Terdapat beberapa pengertian yang telah dirumuskan oleh beberapa pakar di bidangnya dan badan pemerintahan yang mendefinisikan kebakaran. Diantaranya adalah sebagai berikut:

- "Kebakaran adalah bahaya yang diakibatkan oleh adanya ancaman potensial dan derajat terkena pancaran api sejak dari awal terjadi kebakaran sehingga penjalaran api, asap atau gas yang ditimbulkan". (SNI 03-1736-2000).
- "Kebakaran adalah suatu peristiwa oksidasi bertemu tiga unsur (bahan bakar, oksigen dan panas) yang berakibat menimbulkan kerugian harta benda atau cedera bahkan sampai kematian". (*National Fire Protection Association*).

" suatu reaksi oksidasi eksotermis yang berlangsung dengan cepat dari suatu bahan bakar yang disertai dengan timbulnya api atau penyalaan ". (Kementerian Tenaga Kerja).

Kerugian yang di timbulkan akibat kebakaran yang paling parah adalah adanya korban jiwa pada suatu bencana kebakaran . Korban luka parah, sedang bahkan ringan yang banyak terjadi setiap tahunnya di Indonesia dan di dunia. Kerugian tidak hanya dari korban jiwa atau kecacatan tetapi juga dari segi kerugian materi yang besar, misalnya dari nilai bangunan beserta isinya yang hangus terterbakar yang berakibat juga pada menurunya produktivitas kegiatan usaha atau perusahan hingga terjadi gangguan sosial, hilangnya pekerjaan bagi karyawan yang perusahan tempat ia bekerja terbakar dan atau jika perumahan yang terbakar membuat masyarakat akan mengungsi karena kehilangan tempat tinggal dan harta benda.

2.3.2 Teori Kebakaran Api

Api merupakan salah satu kebutuhan manusia sejak zaman peradaban dimulai hal ini dikarenakan untuk memasak manusia membutuhkan api tidak hanya itu, api juga memiliki manfaat bagi manusia yaitu sumber penerangan di malam hari sebelum ditemuakannya listrik, sumber kehangatan apabila musim dingin datang. Api merupakan sesuatu hal dibutuhkan manusia, jika api tersebut terkendali dan keberadaannya mengunutungkan manusia.

Teori mengenai kebakaran umumnya mengacu kepada segi tiga api. Terciptanya api karena adanya tiga unsur meliputi udara (oksigen), bahan bakar, dan sumber panas. Ketiga unsur ini harus ada dalam satu tempat dan pada suatu waktu bersamaan maka tercipta api, jika ada tidak ada salah satu dari tiga unsur tersebut, maka api tidak akan timbul dan kebakaran tidak terjadi. Ada tiga tahapan terjadinya proses timulnya api, meliputi:

Gambar 2.1 Segitiga Api

(Sumber: https://www.google.com/, Septemer 2016)

Ada tiga tahapan terjadinya proses timbulnya api, meliputi:

1. Tahap Baru Jadi

Tahap baru jadi adalah wilayah dimana pemanasan awal, penyulingan dan pirolisis lambat sedang berlangsung. Gas dan sub-mikron partikel yang dihasilkan dan diangkut jauh dari sumber dengan difusi, pergerakan udara, dan gerakan konveksi lemah, diproduksi oleh daya apung dari produk pirolisis.

2. Tahap Membara

Tahap membara merupakan wilayah pirolisis sepenuhnya dikembangkan yang diawali dengan penggapian dan mencakup tahap awal pembakaran. *Aerosol* dan partikel tak terlihat asap yang dihasilkan dan diangkut jauh dari sumber dengan pola konveksi moderat dan latar belakang gerakan udara.

3. Tahap Kebakaran

Tahap *flaming* merupakan wilayah reaksi cepat yang mencakup periode terjadinya awal api untuk api sepenuhnya dikembangkan menjadi kebakaran yang tidak dapat dikendalikan.

Api yang terdapat dalam ruang dan memunculkan kebakaran melalui tahapan sebagai berikut :

a. Penyalaan

Api muncul dalam ruangan, api masil relative kecil

b. Pengembangan awal

Api terus berkembang, bahan bakar masih banyak

c. Penyalaan serentak

Tahap terjadi *flashover*, seluruh bahan bakar/materi terbakar dan kebakaran sulit dikendalikan

d. Pengembangan penuh

Ruangan beserta isi terbakar dengan sempurna

e. Surut

Seluruh materi terbakar habis, api mulai padam

Gambar 2.2 Proses Pembentukan Api dan Kebakaran dalam Ruangan (Sumber : https://www.google.com, Oktober 2016)

2.3.3 Klasifikasi Bahaya Kebakaran

Peraturan Menteri (PERMEN) Tenaga Kerja No.04/PER/MEN/1980 mengklasifikasikan bahaya kebakaran berdasarkan media pemadam kebakaran sebagaimana diperlihatka tabel berikut ini.

Tabel 2.1 Klasifikasi Bahaya dan Media Pemadama Berdasarkan Peraturan Menteri Tenaga Kerja (Permen No.04/PER/MEN/1980)

Kelas	Keterangan	Jenis Bahan Pemadam		
Kelas A	Sumber api berasal dari	Pemadam: Air, uap air,		
	bahan bakar padat	pasir, busa, CO ₂ , Serbuk		
	seperti: kayu, kain,	kimia kering, cairan		
	kertas, plastik, dan lain-	kimia.		
	lain			
Kelas B	Sumber api berasal dari	CO ₂ , serbuk kimia		
	bahan bakar cair seperti:	kering, busa.		
	bensin, minyak tanah,			
	spirtus, solar, avtur.			
Kelas C	Sumber api berasal dari	CO ₂ , serbuk kimia		
	atau disebabkan karena	kering,		
	kegagalan fungsi	Uap air.		
	peralatan listrik			
Kelas D	Sumber api berasal dari	Serbuk kimia sodium		
	bahan bakar logam atau	klorida, grafit.		
	metal seperti:			
	magnesium, titanium,			
	aluminium dan lain-lain.			

(Sumber : Permen No.04/PER/MEN/1980)

Klasifikasi kebakaran dengan media pemadam memiliki korelasi dan pengaruh terhadap tingkat bahaya kebakaran yang diakibatkannya, diantaranya ialah:

- 1. Pertama, bahaya kebakaran ringan ialah bahaya kebakaran yang memiliki tingkat penyebaran api lambat dan pada area terbatas.
- 2. Kedua, bahaya kebakaran sedang yang kemudian dibagi lagi menjadi tiga kelompok. Kelompok 1: Bahaya kebakaran yang memiliki tingkat bahaya kebakaran sedang karena bahan yang terbakar melepaskan panas sedang dan

api menjalar sedang, dengan tinggi api yang tidak lebih dari 2,5 meter. Kelompok 2: Bahaya kebakaran yang memiliki tingkat bahaya kebakaran sedang karena bahan yang terbakar melepaskan panas sedang dan api menjalar sedang dengan tinggi api tidak lebih dari 4 meter. Kelompok 3: Bahaya kebakaran yang memiliki tingkat kebakaran lebih tinggi dikarenakan bahan-bahan yang terbakar melepaskan panas lebih tinggi dan menjalarnya panas lebih cepat di tambah lagi jangkauan area yang lebih luas.

3. Ketiga, bahaya kebakaran berat ialah bahaya kebakaran yang terjadi karena bahan-bahan terbakar memiliki sifat yang mudah penjalaran api dan panas yang sangat tinggi dengan jangkauan area yang sangat luas.

Kebakaran yang sering terjadi dimana-mana dengan bahan bakar yang berbeda-beda pula seperti hal yang terjadi di area pemukiman penduduk, suatu area kawasan industri yang terdapat pabrik-pabrik dengan hasil produksi yang berbeda-beda pula. Kebakaran hutan yang sering terjadi di Indonesia, yang pada tahun 2016 kebakaran hutan di Kalimantan dan sumatera menjadi Bencana Nasional dari peristiwa kebakaran semua itu menghasilkan panas, gas, ledakan dan radiasi. Berdasarkan hal inilah kita dapat membedakan tingkat bahaya kebakaran ringan, sedang dan berat. kemudian di tambah lagi dengan kerugian yang diakibatkan kebakaran tersebut mulai dari korban jiwa berjatuhan, aspek ekonomi atau materi, dan aspek sosial.

2.4 Penyebab dan Sumber Kebakaran

2.4.1 Kebakaran Karena Faktor Gejala Alam

Kebakaran yang terjadi disebabkan karena gejala alam tanpa campur tangan manusia yang umumya berkaitan dengan keadaan cuaca dan gunung merapi :

a. Letusan Gunung Merapi

Akibat leturan gunung merapi memungkinkan terjadi kebakaran hutan atau sepanjang lava di yang dilalui. Kebakaran rumah penduduk yang berdekatan dengan kaki gunung merapi yang pada saat terjadi letusan gunung merapi terjadinya semburan awan panas yang menjangkau rumah penduduk.

b. Sinar Matahari

Pada cuaca panas akan mengakibatkan suhu naik sehingga pada saat musim kemarau yang berkepanjangan membuat padang savana misalnya dan atau dahan-dahan yang kering kemudian bergesekan maka timbulah api yang pada akhirnya menimbulkan kebakaran.

c. Gempa Bumi

Gempa bumi adalah suatu bencana alam yang tidak dapat di cegah. Jika terjadi gempa bumi pada kekuatan tertentu akan menyebabkan runtuh rumah-rumah, gedung dan keretakan jalanan hal ini dapat mengakibatkankan sirkuit pendek (korsleting listrik).

d. Petir/halilintar

Petir merupakan tegangan listrik yang tinggi yang biasanya terjadi pada saat hujan. Akibat petir sering menyebabkan kebakaran hutan, rumah atau gedung yang tidak dilingungi dengan penangkal petir.

e. Angin topan

Angin topan yang juga dapat menyebabkan kebakaran dikeranakan saat terjadi angin topan dapat menimpa tiang-tiang dan kabel-kabel listrik tegangan tinggi.

2.4.2 Kebakaran Karena Faktor Manusia

Kebakaran yang disebabkan karena kelalaian manusia yang tidak disengaja dan ada juga karena kesengajaan. Kebakaran yang sering terjadi selama ini lebih cenderung pada kekalaian manusia terhadap bahaya kebakaran disekitar lingkungan. Merokok disembarang tempat merupakan perilakau yang menunjukkan ketidak pedulian terhadap bahaya yang mengancam diri sendiri dan orang lain. Ketataan rumah tangga yang buruk. Mengggunakan atau memperbaiki instalasi listrik dengan cara tidak benar. Melakukan pekerjaan yang berisiko menimbulkan kebakaran tanpa pengaman yang memadai sesuai prosedur seperti pekerjaan yang berhubungan dengan gas dan api.

Kebakaran juga ada yang terjadi karena unsur kesengajaan manusia dan perilaku yang tidak bertanggung jawab. Kebakaran yang disebabkan kesengajaan manusia biasanya memiliki tujuan tertentu seperti: meninbulkan kekacauan, menghilangkan jejak kejahatan atau bukti-bukti, keinginan untuk mendapatkan ganti dari jasa asuransi bangunan, kebakaran hutan yang disengaja untuk membuka lahan usaha.

2.5 Pencegahan dan Penanggulangan Kebakaran

"Pencegahan dan penganggulangan kebakaran adalah semua tindakan yang berhubungan dengan pencegahan, penanggulangan dan pemadaman kebakaran terhadap perlindungan jiwa dan keselamatan manusia serta perlindungan harta benda. Dengan meningkatnya penggunaan bahan-bahan mudah terbakar maka dari itu penginfestasian pencegahan dan penanggulangan terhadap kebakaran harus ditingkatkan, agar kerugian-kerugian menjadi sekecil mungkin. Pencegahaan kebakaran lebih ditekankan kepada usaha-usaha yang memindahkan atau mengurangi terjadinya kebakaran. Penanggulangan lebih ditekankan kepada tindakan-tindakan terhadap kejadian kebakaran, agar korban semininal mungkin "(Suma'mur,1981).

Pencegahan kebakaran dapat dilakukan melalui:

- a. Melalui sebuah pembiasaan sikap dan berberilaku disiplin di dunia kerja dan meningkatkan kepedulian pada lingkungan sekitar terhadap tanda-tanda laranngan seperti "Dilarang Merokok di area ini".
- b. Melakukan pelatihan kepada pekerja yang memiliki resikio tinggi terhadap bahaya kebakaran untuk bekerja sesuai dengan prosedur yang berlaku.
- c. Melakukan semulasi kebakaran gedung terhadap seluruh karyawan agar karyawan tidak panik dan mengetahui cara-cara menyelamatkan diri apabila terjadi kebakaran.
- d. Pencegahan dapat dilakukan pada saat perencanaan gedung sebelum di bangun yaitu menggunakan bahan bangunan yang tahan api atau minimal dapat menahan penjalaran api, pintu atau jendela yang tahan panas dan lainlain.

- e. Menerapkan sistem proteksi kebaran aktif dan pasif sesuai prosedur dan jenis bangunan.
- f. Melakukan inspeksi secara teratur terhadap sistem proteksi kebakaran.

2.6 Sistem Proteksi Kebakaran

Sistem proteksi kebakaran atau pencegahan kebakaran adalah suatu rangkaian kegiatan lebih ditekankan kepada usaha-usaha yang dilakukan dalam sistem memindahkan atau mengurangi terjadinya kebakaran. Ada dua jenis sistem proteksi yaitu sistem proteksi aktif dan sistem proteksi pasif.

2.6.1 Sistem Proteksi Kebakaran Aktif

Kemampuan peralatan dalam mendeteksi dan memadamkan kebakaran, pengendalian asap, dan sarana penyelamatan kebakaran (Erry Saptria, dkk). Sistem proteksi kebakaran aktif merupakan upaya dalam mendeteksi sedini mungkin dan apabila kebakaran mulai muncul dapat secapat mungkin memadamkannya karena perlatan dan sarana yang telah dipasang pada bangunan yang dapat dipergunakan secara manual maupun otomatis. Sistem proteksi kebakaran aktif terdiri dari:

a. Sistem Tanda Bahaya Kebakaran

Sistem tanda bahaya kebakaran ialah sistem pendeteksi sedini mungkin pada saat terjadinya kebakaran di gedung sehingga bisa dengan cepat ditangani dan dipadamkan. Pada bangunan gedung dengan area yang luas dan bertingkat, tidak memungkinkan jika hanya mengandalkan petugas keamanan atau petugas yang khusus menangani bahaya kebakaran dalam mendeteksi awal munculnya kebakaran oleh sebab itu dibutuhkan alat bantu pendeteksi bahaya kebakaran. Sistem tanda bahaya tersebut terdiri dari:

- a. Panel kontrol utama (main control panel)
- b. Titik panggil manual (manual call box)
- c. Alat pengindera kebakaran (*fire detector*)
- d. Alarm bel (horn)

Komponen dari alat-alat yang tersedia di gedung bekerja secara manual yang seperti titik panggil manual (*manual call box*) yang ketika terjadi kebakaran kita dapat menarik atau menekan handle yang tersedia sehingga membunyikan suara yang memerikan peringatan bahaya kebakaran yang akan terjadi. Penginderaan kebakaran terdapat tiga jenis pertama, penginderaan asap (*smoke detector*), penginderaan panas atau suhu (*heat detector*), penginderaan nyala api (*fleme detector*).

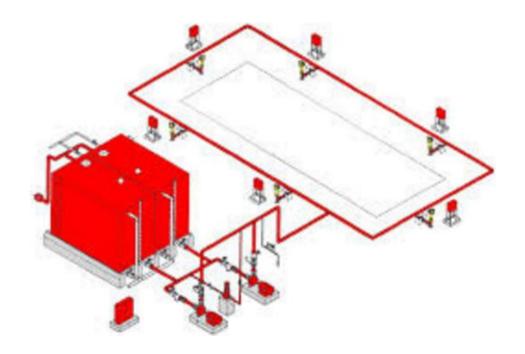
Gambar 2.3 Panel Control Utama

(Sumber: https://www.google.com, September 2016)

Gambar 2.4 Manual Call Box

(Sumber: https://www.google.com, September 2016)

Gambar 2. 5 Fire Detector Api

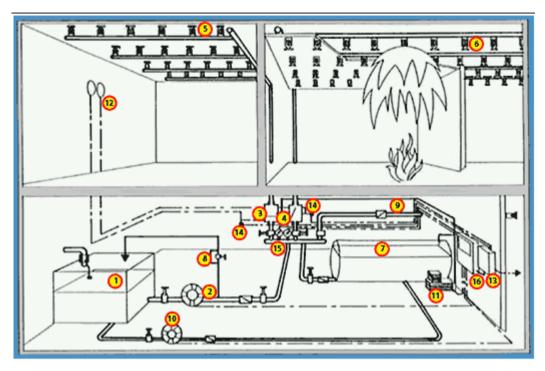

(Sumber: Https://Www.Google.Com, September 2016)

b. Sistem Hidran Kebakaran

Hidran adalah salah satu sistem instalasi perpipaan yang tergabung pada jaringan perpipaan berisi air bertekanan tertentu sehingga pada saat terjadi kebakaran dapat digunakan untuk memadamkan api. Hidran kebakaran dapat di bagi menjadi 3 macam pembagian ini berdasarkan lokasi dan tempatnya.

- 1) Hidran gedung, merupakan hidran yang terletak atau dibangun di dalam gedung. Hidran gedung memiliki sistem dan peralatan yang disediakan oleh pihak pemilik gedung sebagai penyedia cadangan air yang dapat dipergunakan pada saat terjadi bahaya kebakaran.
- Hidran halaman, merupakan hidran yang terletak dihalaman atau lingkungan bangunan yang juga memiliki fungsi yang sama dengan hidran gedung.

3) Hidran kota, adalah hidran yang berada di tepi atau sepanjang jalan daerah perkotaan. Hidran ini disediakan oleh pemerintah sebagai sarana kota dalam mencagah atau mengurangi apabila terjadi kebakaran.



Gambar 2. 6 Sistem Hidran

(Sumber: https://www.google.com, September 2016)

c. Pemercik (Spirinkler) Otomatis

Sistem *spirinkler* merupakan alat yang terhubung dengan jaringan pemipaan berisikan air dengan tekanan tertentu yang dapat memancarkan air kesegala arah di dalam ruangan secara otomatis ketika terjadi kebakaran. Sistem ini bekerja karena adanya penginderaan atau pendeteksi kebakaran pada *spirinkler*.

Gambar 2. 7 Contoh Sistem Pemercik (Spirinkler) Otomatis

(Sumber: https://www.google.com, September 2016)

d. Alat Pemadam Api Ringan

Alat Pemadam Api Ringan (APAR) merupakan alat yang dapat digunakan oleh satu orang dan dapat diwaba atau dipindahkan. APAR alat yang dapat digunakan pada saat tahap awal terjadi kebakaran atau kebakaran yang masih kecil atau terbatas. Peraturan yang terkait APAR adalah Peraturan Menteri Tenaga Kerja dan Transmigrasi No:04 PER.04/MEN/1980 tentang Syarat-syarat Pemasangan dan Pemeliharaan Alat Pemadam Api Ringan.

Berikut adalah klasifikasi Jenis APAR berdasarkan kelas api atau golongan bahan bakar dengan bahan pemadamannya.

Tabel 2.2 Klasifikasi Jenis Apar

Alat pemadam api (APAR)	iiusi.	Air	Busa	CO_2	Kimia	Halon
Alat peniadani api (APAK)		All	Dusa		Kiiiia	Tiaion
					Kering	
Kayu, kertas, kain, plastik, sampah	A	V	1	X	√	1
dll						
Bahan cair yang mudah terbakar	В	X	$\sqrt{}$	$\sqrt{}$		V
dan tidak larut						
Bahan cair yang mudah terbakar	В	X	$\sqrt{}$	$\sqrt{}$	√	V
dan larut dalam air: Aceton,						
alcohol dll						
Bahan gas : LPG, LNG	С	X	X	$\sqrt{}$	V	$\sqrt{}$
Peralatan yang bermuatan listrik	D	X	X	V	1	1
dan atau bahan logam						
		L	L	L	L	I

(Sumber: Permen No.04/PER/MEN/1980)

Gambar 2.8 Jenis-Jenis Alat Pemadam Api Ringan (APAR) (Sumberhttps://www.google.com, Oktober 2016)

2.6.2 Sistem Proteksi Pasif

Kemampuan stabilitas struktur dan elemennya, konstruksi tahan api, kompartemenisasi dan pemisahan, serta proteksi pada bukaan yang ada untuk menahan dan membatasi kecepatan menjalarnya api dan asap kebakaran (Erry Saptria, dkk). Sistem proteksi kebakaran pasif adalah sistem pencegahan bahaya kebaran yang berkerja secara pasif artinya tidak ada gerakan ataupun digunakan secara langsung oleh manusia. Proteksi kebakaran pasif merupakan sistem yang dibangun pada saat perencanaan suatu banguan yang akan dibangun karena hal ini berhubungan dengan struktur bangunan, material konstruksi, interior bangunan, desain site, dinding dalam, dinding luar, akses dan lingkungan.

2.7 Pemeriksaan Keandalan Bangunan Terhadap Bahaya Kebakaran

Untuk mengetahui suatu bangunan dan fasilitasnya tingkat keandalan terhadap bahaya kebakaran maka perlu dilakukan serangkaian pemeriksaan terhadap kelengkapan upaya pencegahan kebakaran yang bersifat aktif, pasif, sehingga diperoleh informasi tingkat keandalan dari bangunan tersebut.

Dalam melaksanakan pemeriksaan tingkat keandalan terhadap kebakaran bangunan, perlu diketahui terlebih dahulu istilah dan definisi (Erry Saptria, dkk) antara lain :

- a. Dapat diterima : Sesuatu yang telah memenuhi syarat sesuai ketentuan yang telah ditetapkan oleh instansi yang berwenang.
- b. Diijinkan: Diterima atau dapat diterima sesuai dengan ketentuan yang tertuang dalam standar atau dokumen kontrak.
- c. Instansi yang berwenang : Lembaga pemerintah yang berwenang dan bertanggung jawab untuk memeriksa dan menyetujui suatu proses, sistem, prosedur atau kualitas produk yang dihasilkan dibidang keselamatan bangunan terhadap bahaya kebakaran.
- d. Keamanan gedung: Kondisi yang menjamin terpecahnya segala ganguan baik oleh manusia, cuaca dan gangguan kejahatan lainnya terhadap gedung.
- e. Keandalan: Tingkat kesempurnaan kondisi perlengkapan proteksi yang menjamin keselamatan, fungsi dan kenyamanan suatu bangunan gedung dan lingkungannya selama masa pakai dari gedung tersebut dari segi bahayanya terhadap kebakaran.
- f. Kenyamanan gedung : Kondisi yang menyediakan berbagai kemudahan yang diperlukan sesuai dengan fungsi ruangan atau gedung dan atau

- lingkungan sehingga penghuni dapat melakukan kegiatannya dengan baik, betah dan produktif.
- g. Keselamatan gedung : Kondisi yang menjamin keselamatan dan tercegahnya bencanan dalam suatu gedung beserta isinya (manusia, pelaratan, barang) yang diakibatkan oleh kegagalan atau tidak berfungsinya utilitas gedung.
- h. Kompartemenisasi: Usaha untuk mencegah penjalaran kebakaran dengan cara membatasi api dengan dinding lantai, kolom, balok dan lainya yang tahan terhadap api dalam waktu yang sesuai dengan kelas bangunan.
- i. Kondisi andal dan mencukupi : Kondisi dari bangunan, bagian bangunan atau utilitas bangunan yang menunjukkan kinerja yang prima atau berfungsi maksimal sesuai ketentuan dan persyaratan keselamatan gedung yang berlaku.
- j. Kondisi kurang andal : Kondisi dari bangunan, bagian bangunan atau utilitas bangunan yang menunjukkan kinerja yang berfungsi kurang maksimal menurut ketentuan dan persyaratan keselamatan gedung yang berlaku.
- k. Kondisi tidak andal : Kondisi dari bangunan, bagian bangunan atau utilitas bangunan yang menunjukkan kinerja yang tidak prima atau tidak berfungsi sesuai ketentuan dan persyaratan keselamatan gedung yang berlaku.
- Kondisi tidak berfungsi : Suatu keadaan dimana ada bagian dari bangunan dari bangunan atau utilitas bangunan tersebut tidak dapat berfungsi sesuai persyaratan teknis atau tidak dapat dimanfaatkan lagi.
- m. Pengujian : Kegiatan pengukuran dan atau pengetesan untuk mendapatkan data kekuatan atau sifat teknis lainnya, dari contoh uji yang telah ditetapkan atau disepakati yang dapat mewakili struktur bangunan atau bagian pekerjaan tertentu.
- n. Pintu kebakaran : Pintu yang langsung menuju ke tangga kebakaran dan hanya digunakan apabila terjadi kebakaran pada bangunan.
- o. Standar acuan : Standar baku yang digunakan sebagai acuan dalam dokumen kontrak termasuk peraturan-peraturan pemerintah.

- p. Spesifikasi teknis : Dokumen tertulis yang menetapkan persyaratanpersyaratan yang sesuai dengan parameter pelayanan atau kriteria khusus lainnya dibidang penanggulangan kebakaran yang dikehendaki oleh pemilik bangunan.
- q. Tangga kebakaran : Tangga yang direncanakan khusus untuk penyelamatan bagi penghuni dari bahaya kebakaran.
- r. Tapak: Tempat dimana suatu bangunan akan didirikan
- s. Utilitas : Perlengkapan atau peralatan yang dipasang didalam dan luar bangunan gedung untuk menunjang fungsi dan keandalannya.
- t. Nilai Keandalan Sistem Keselamatan Bangunan (NKSKB): Hasil pengukuran kinerja sistem berdasarkan standar keselamatan bangunan yang berlaku dan atau pengetahuan atau pengalaman tim pemeriksa.

2.7.1 Parameter Pemeriksaan Keandalan Sistem Keselamatan Bangunan (KSKB)

Parameter yang digunakan dalam menetapkan tingkat keandalan bangunan terhadap bahaya kebakaran adalah (Erry Saptria, dkk 2005) :

a. Kelengkapan Tapak

Komponen pemeriksaan yang termasuk dalam kelengkapan tapak adalah:

- 1) Sumber air
- 2) Jalan lingkungan
- 3) Jarak antar bangunan
- 4) Hidran halaman
- b. Sarana Penyelamatan

Komponen pemeriksaan yang termasuk dalam kelengkapan sarana penyelamatan adalah :

- 1) Jalan keluar
- 2) Konstruksi jalan keluar
- 3) Landasan helikopter
- c. Proteksi Aktif

Komponen pemeriksaan yang termasuk dalam kelengkapan proteksi aktif adalah:

- 1) Deteksi dan alarm
- 2) Siemes conection
- 3) Pemadam api ringan
- 4) Hidran gedung
- 5) Alat percikan (springkler)
- 6) Sistem pemadam luapan
- 7) Pengendalian asap
- 8) Deteksi asap
- 9) Pembuangan asap
- 10) Lift kebakaran
- 11) Cahaya darurat
- 12) Listrik darurat
- 13) Ruang pengendalian operasi
- d. Proteksi Pasif

Komponen pemeriksaan yang termasuk dalam kelengkapan proteksi pasif adalah:

- 1) Ketahanan api struktur bangunan
- 2) Kompartemenisasi ruangan
- 3) Perlindungan bukaan

Untuk menetapkan tingkat keandalan, maka setiap parameter dan komponennya dilakukan penilaian sebagaimana dijelaskan pada butir 2.7.2

2.7.2 Penilaian Keandalan Bangunan terhadap Bahaya Kebakaran

Untuk mengetahui tingkat keandalan bangunan terhadap bahaya kebakaran maka dilakukan penilaian. Berdasarkan Erry, dkk 2005, penilaian dijelaskan sebagai berikut :

a. Penilaian Tingkat Keandalan Sistem Kebakaran Bangunan (KSKB)

Kriteria yang di peroleh sebagai bahan acuan praktis, penilaian tingkat keandalan kebakaran bangunan sebagaimana diperlihatkan pada tabel 2.3 (Erry, dkk 2005).

Tabel 2.3 Penilaian Tingkat Keandalan Bangunan terhadap Kebakaran

Nilai	Kesesuaian	Keandalan
>80-100	Sesuai Persyaratan	Baik (B)
60-80	Terpasang tetapi ada sebagian kecil instalasi	Cukup (C)
	yang tidak sesuai dengan persyartan	
<60	Tidak sesuai sama sekali	Kurang (K)

(Sumber: Erry, dkk – 2005, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

b. Pembobotan

Pembobotan pada masing-masing komponen parameter harus dilakukan dengan motode *Analitycal Hierarchycal Process* (AHP). Metode ini dipilih dengan tujuan untuk mengurangi unsur subjektivitas pada pembobotan. Hierarki disini adalah suatu jenis khusus sistem yang didasarkan pada asumsi bahwa satuan-satuan yang ada, telah di indentifikasi dan dapat dikelompokan ke dalam kumpulan terpisah, dimana satuan suatu kelompok mempengaruhi satuan sebuah yang kelompok yang lain. Elemen tiap kelompok hirarki diasumsikan tidak saling tergantung satu sama lain. Adapun pembobotan terhadap parameter yang dijelaskan pada butir 2.7.1 dan telah di proses dengan AHP diperlihatkan pada tabel 2.4.

Tabel 2.4 Hasil Pembobotan Parameter Keandalan Sistem Kebakaran Bangunan

No	Parameter KSKB	Bobot KSKB (%)

1	Kelengkapan tapak	25
2	Sarana penyelamatan	25
3	Sistem proteksi aktif	24
4	Sistem proteksi pasif	26

(Sumber : Erry, dkk – 2005, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

c. Penilaian Komponen Parameter KSKB dan Penjelasannya

Untuk mendapatkan nilai keandalan, maka terlebih dahulu dilakukan penilaian terhadap komponen parameter yang mempengaruhi KSKB. Adapun penilaian tiap komponen parameter diperlihatkan pada tabel-tabel dibawah ini.

1) Kelengkapan Tapak

Tabel 2.5 Penilaian Komponen Parameter Kelengkapan Tapak

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Sumber air			27		
2	Jalan lingkungan			25		
3	Jarak antara			23		
	bangunan					
4	Hidran halaman			25		
	Nilai Total					
	Nilai Parameter K	Nilai Parameter Kelengkapan Tapak 25				

(Sumber : Erry, dkk – 2005, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

Tata cara pengisian penilaian komponen parameter:

- 1. Kolom 3 diisi sesuai dengan hasil pengamatan langsung, berdasarkan kriteria penilaian tersebut pada tabel dibawah ini.
- 2. Kolom 4 akan terisi dengan sendirinya sesuai masukan kolom 3

- 3. Kolom 6 akan terisi dengan sendirinya, merupakan perkalian antara nilai kolom 4 dengan kolom 5.
- 4. Kolom 7 merupakan jumlah seluruh nilai Sub KSKB

1) Sarana Penyelamatan

Tabel 2.6 Penilaian Komponen Parameter Sarana Penyelamatan

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Jalan keluar			25		
2	Konstruksi jalan keluar			38		
3	Landasan Helikopter			35		
	Nilai Total					
	Nilai Parameter Sa	25				

(Sumber: Erry, dkk – 2015, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

Tabel 2.7 Penjelasan Penilaian Komponen Parameter Sarana Penyelamatan

No	Komponen	Keandalan	Kriteria Penilaian
1	Jalan keluar	В	 Minimal perlantai 2 exit dengan tinggi efektif 2,5 m Setiap exit harus terlindungi dad bahaya kebakaran Jarak tempuh maksimal 20 meter dari pintu keluar Ukuran Minimal 200 cm
No	Komponen	Keandalan	Kriteteria Penilaian

			5.Jarak suatu exit tidak > 6 in
			6. Pintu dari dalam tidak buka langsung ke
			tangga
			7. Penggunaan pintu ayun tidak
			mengganggu proses jalan keluar.
			8. Disediakan lobby bebas asap dengan
			TKA 60/60/60 terdapat pintu keluar
			diberi tekanan positif
			9. Exit tidak boleh terhalang
			10. Exit menuju ke ruang terbuka
		С	Setengah dari kriteria dari poin "B" yang
			terpenuhi
		K	Tidak memenuhi kriteria dari poin "B"
2	Konstruksi jalan	В	1. Konstruksi tahan minimal 2 Jam
	keluar		2. Harus bebas halangan
			3. Lebar minimal 200 cm
			4. Jalan terusan yang dilindungi terhadap
			kebakaran, bahan tidak mudah
			terbakar. Langit-langit punya
			ketahanan penjalaran api tidak < 60 menit
			5. Pada tingkat tertentu elemen bangunan
			bisa mempertahankan stabilitas
			struktur bila terjadi kebakaran
			6. Dapat mencegah penjalaran asap kebakaran
			7. Cukup waktu untuk evakuasi penghuni
			Akses ke bangunan harus disediakan
			bagi tindakan petugas kebakaran.

		С	Setengah dari kriteria dari poin "B" yang
			-
No	Komponen	Keandalan	Kriteria penilaian
			terpenuhi
		K	Tidak memenuhi kriteria dari poin
			"B"
3	Landasan	В	1. Hanya pada bangunan tinggi minimal
	Helikopter		60 m
			2. Konstruksi atap kuat menahan bebaan
			helikopter
			3. Dilengkapi dengan tanda-tanda untuk
			pendaratan baik warna, bentuk maupun
			ukurannya.
			4. Dilengkapi dengan alat pemadam api
			dengan bahan busa dan peralatan bantu
			evakuasi lainya.
			5. Ketentuan lain bagi pendaratan
			disesuaikan dengan peraturan yang
			terkait dalam bidang penerbangan.
		С	1. Tanda dan perlengkapan pendaratan
			tidak terlihat dengan baik.
			2. Warna tanda telah kusam dan kolor.
		K	Tidak memenuhi standar atau persyaratan
			yang berlaku.

2) Proteksi Aktif

Tabel 2.8 Penilaian Komponen Parameter Proteksi Aktif

No	Komponen	Keanda	Hasil	Bobot	Nilai	Jumlah
		-lan	Penilaia	(%)		nilai
			n			
1	2	3	4	5	6	7
1	Deteksi dan alaram			8		
2	Siames conection			8		
3	Pemadam api			8		
	ringan					
4	Hidran gedung			8		
5	Springkler			8		
6	Sistem pemadam			7		
	luapan					
7	Pengendali asap			8		
8	Deteksi asap			8		
9	Pembuangan asap			7		
10	Lift kebakaran			7		
11	Cahaya darurat			8		
12	Listrik darurat			8		
13	Ruang pengendali			7		
	operasi					
		Nilai	i Total			
	Nilai Parameter Prote	eksi Aktif		24		

(Sumber : Erry, dkk – 2005, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

Tabel 2.9 Penjelasan Penilaian Komponen Parameter Proteksi Aktif

No	Komponen	Keandalan	Kriteria Penilaian
1	Deteksi dan alarm	В	1. Perancangan dan pemasangan sistem
			deteksi dan alaram kebakaran sesuai SNI
			03-3986
			2. Sistem deteksi dan alarm harus dipasang
			pada semua bangunan kecuali kelas Ia
			3. Tersedia detector panas
			4. Dipasang alat manual pemicu alarm
			5. Jarak tidak > dari 30 m dari titik alarm
			manual.
		С	Perancangan sistem deteksi dan alarm
			kebakaran kebakaran sesuai SNI 03-3986,
			namun pemasangannya tidak sesuai SNI 03-
			3986
		K	Tidak sesuai dengan persyaratan
			perancangan maupun pemasangan.
2	Siemes conection	В	1. Tersedia dan ditempatkan pada lokasi
			yang mudah dijangkau mobil pemadam
			kebakaran.
			2. Diberikan tanda petunjuk sehingga
			mudah dikenali
		С	Tersedia, namun sulit dijangkau secara
			mudah dari mobil pemadam
		K	Tidak tersedia sebagaimana yang
			dipersyaratkan.

3	Pemadam Api	В	1. Jenis APAR sesuai SNI 03-3988
	Ringan		2. Jumlah sesuai dengan luasan
			banguanannya Jarak penempatan antar -
No	Komponen	Keandalan	Kriteria penilaian
			maksimal 25 m
		С	1. Jenis Apar sesuai dengan SNI 03-3988
			2. Kurang dari jumlah sesuai dengan luasan
			bangunannya.
			3. Jarak penempatan antar alat maksimal 25
			m
		K	Jenis dan jumlah yang dipasang tidak sesuai
			dengan yang dipersyaratkan dalam SNI 03-
			3988
4	Hidran gedung	В	1. Tersedia sambungan slang diameter 35
			mm dalam kondisi baik, panjang slang
			minimal 30 m dan tersedia kontak untuk
			menyimpan.
			2. Pasokan air cukup tersedia untuk
			kebutuhan sistem sekurang-kurangnya
			untuk 45'
			3. Bangunan kelas 4, luas 1000 m² /bh
			(Kompartemen tanpa partisi), 2 buah /
			1000m ² (Kompartemen dengan partisi)
			Bangunan kelas 5, luas 800m²/ buah tanpa
			partisi, dan 2 bh/800m² dengan partisi
		С	1. Tersedia sambungan slang diameter
			35mm, panjang slang minimal 30 m dan
			tersedia kontak untuk menyimpan.
			2. Bangunan Kelas 4 hanya tersedia 1 buah
			perluas 1000m², baik pada ruang

			kompartemen tanpa partisi maupun
			kompartemen dengna partisi.
			Bangunan kelas 5, hanya tersedia 1 buah-
No	Komponen	Keandalan	Kreiteria penilaian
			perluas 800m², baik pada ruang
			kompartemen tanpa partisi, maupun
			kompartemen dengan partisi.
		K	Tersedia sambungan slang diameter 35 mm,
			panjang slang minimal 30 m dan tersedia
			kontak untuk menyimpan namun kondisi
			kurang terawat.
4	Springkler	В	1. Jumlah perletakan dan jenis sesuai dengan
			persyaratan
			2. Tekanan catu air springkler pada titik
			terjauh (0,5- 2,0) kg/cm ²
			3. Debit sumber catu air minimal (40- 200)
			liter /menit per kepala springkler.
			4. Jarak kepala springkler kedinding kurang
			dari 1/2 jarak antar kepala springkler
			5. Jarak max. springkler : Bahaya kebakaran
			ringan dan sedang -4,6 m. Bahaya
			kebakaran berat -3, 7 m
			6. Dalam ruang tersembunyi, jarak langit-
			langit dan atap 80 cm, dipasang jenis
			kepala springkler dengan pancaran keatas.
		С	1. Jumlah, perletakkan dan jenis sesuai
			dengan persyartan
			2. Tekanan catu air springkler pada titik
			terjauh (0,5-2,0) kg/cm2

			3. Debit sumber catu air minimal (40-
			200) liter / menit per kepala srikler.
			4. Jarak springkler : -
No	Komponen	Keandalan	Kriteria penilaian
			a. Bahaya kebakaran ringan dan sedang
			lebih dari jarak maksimal -4,6 m.
			b. Bahaya kebakaran berat lebih dari
			jarak maksimal -3,7 m.
			5. Dalam ruang tersembunyi, jarak langit-
			langit dan atap lebih 80 cm, dipasang.
			Jenis kepala springkler dengan pancaran
			kebawah.
		K	Jumlah, perletakan dan jenis kurang sesuai
			dengan persyaratan
6	Sistem pemadam	В	1. Tersedia dalam jenis yang sesuai dengan
	luapan		fungsi ruangan yang diproteksi.
			Jumlah kapasitas sesuai dengan beban api
			dari fungsi ruangan yang diproteksi.
		С	1. Tersedia dalam jenis yang sesuai dengan
			fungsi ruangan yang diproteksi.
			2. Jumlah kapasitas tidak sesuai dengan
			beban api dari fungsi ruangan yang
			diproteksi
		K	Tidak tersedia dalam jenis dan kapasitas
			yang sesuai dengan fungsi ruangan yang
			diproteksi.
7	Pengendalian	В	1. Fan pembuangan asap akan berputar
	asap		berurutan setelah aktifnya detector asap
			yang ditempatkan dalam zona sesuai
			dengan reservoir asap yang dilayani fan.

			2. Detektor asap harus dalam keadaan bersih
			dan tidak terhalang oleh benda lain
			disekitarnya.
No	Komponen	Keandalan	Kriteria penilaian
			3. Didalam kompartemen bertingkat
			banyak, sistem pengolahan udara seger
			melalui ruang kosong bangunan tidak
			menjadi satu dengan cerobong
			pembuangan asap.
			4. Tersedia panel control manual dan
			Indikator kebakaran serta buku petunjuk
			pengoperasian bagi petugas jaga.
		С	1. Fan pembuangan asap akan berputar
			berurutan setelah aktifnya detektor asap
			yang ditempatkan dalam zona sesuai
			dengan reservoir asap yang dilanyani fan.
			2. Detektor asap kotor atau terhalang oleh
			benda lain disekitarnya.
			3. Didalam kompartemen bertingkat
			banyak, sistem pengolahan udara
			beroperasi dengan menggunkan seluruh
			udara segar melalui ruang kosong
			bangunan tidak menjadi satu dengan
			cerobong pembuatan asap.
			4. Tersedia panel control manual dan
			indikator kebakaran serta buku petunjuk
			pengoperasian bagi petugas juga.
		K	Peralatan pengendali tidak terpasang sesuai
			dengan persyaratan, baik jenis, jumlah atau
			tempatnya.

8	Deteksi asap	В	1. Sistem deteksi asap memenuhi SNI 03-
			3689, mengaktifkan sistem peringatan
			penghuni bangunan.
No	Komponen	Keandalan	Kriteria penilaian
			2. Pada ruang dapur dan area lain yang
			sering mengakibatkan terjadinya alarm
			palsu dipasang alarm panas, terkecuali
			telah dipasang springkler.
			3. Detektor asap yang terpasang dapat
			mengaktifkan sistem pengolahan udara
			secara otomatis, sistem pembuangan asap.
			Ventilasi asap dan panas.
			Jarak antar detector > 20 m dan < 10 m
			dari dinding pemisah atau tirai asap
		С	1. Sistem deteksi asap memenuhi SNI 03-
			3689, mengaktifkan sistem peringatan
			penghuni bangunan.
			2. Pada ruang dapur dan area lain yang
			sering mengakibatkan terjadinya alarm
			palsu tidak dipasang alarm panas, atau
			springkler atau
			3. Jarak antar detektor >20 m dan 10 m dari
			dinding pemisah atau tirai asap.
		K	Tidak satupun tersedia peralaratan yang
			dimaksud.
9	Pembuangan asap	В	1. Kapasitas fan pembuang mampu
			mengisap asap
			2. Terletak dalam reservoir asap setinggi 2
			meter dari lantai
			3. Laju pembuangan asap yang baik.

			4. Fan pembuangan asap mampu beroperasi
			terus menerus pada temperature 200 °C
			selang waktu 60 atau pada temperature -
No	Komponen	Keandalan	Kriteria penilaian
			300 °C selang waktu 30'
			5. Luas horizontal asap dilayani minimal
			satu buah fan, pada titik kumpul dari
			panas di dalam reservoir asap, jauh dari
			perpotongan koridor atau mal
			6. Void eskalator dan tangga tidak
			digunakan sebagai jalur pembuangan
			asap.
			Udara pengganti dalam jumlah kecil harus
			disediakan secara otomatis / melalui
			bukaan ventilasi permanen, kecepatan
			tidak boleh lebih dari 2,5 m/detik,
			didalam kompartemen bertingkat banyak
			melalui bukaan vertikal dengan kecepatan
			rata-rata 1 m/ detik.
		С	1. Kapasitas fan pembuangan dibawah
			kapasitas yang dipersyartan.
			2. Pemasangan telah sesuai dengan
			persyartatan yang diperlukan
		K	Tidak satupun tersedia peralatan yang
			dimaksud.
10	Lift kebakaran	В	1. Untuk penanggulangan saat terjadi
			kebakaran sekurang-kurangnya 1 buah lift
			kebakaran harus dipasang pada bangunan
			ketinggian efektif 25 m.

			2. Ukuran lift sesuai dengan fungsi	
			bangunan yang berlaku. –	
No	Komponen	Keandalan	Kriteria Penilaian	
			3. Lift kebakaran dalam saf yang tahap api,	
			dioperasikan oleh petugas pemadam	
			kebakaran dapat berhenti disetiap lantai,	
			sumber daya listrik direncanakan dari 2	
			sumber menggunakan kabel tahan api,	
			memiliki akses ke tiap lantai hunian	
			4. Peringatan terhadap penggunaan lift pada	
			saat kebakaran, dipasang di tempat yang	
			mudah terlihat dan berbaca dengan tulisan	
			tinggi huruf minimal 20 mm.	
			Penempatan lift kebakaran pada lokasi yang	
			mudah dijangkau oleh penghuni.	
		С	Pemasangan lift kebakaran telah sesuai	
			dengan poin "B" hanya penempatan lift	
			kebakaran pada lokasi yang tersembunyi	
			dan tidak mudah dijangkau oleh penghuni.	
		K	Tidak satupun tersedia peralatan yang	
			dimaksud.	
11	Cahaya darurat	В	1. Sistem pencahayaan darurat harus	
	dan petunjuk arah		dipasang disetiap tangga yang dilindungi	
			terhadap kebakaran, disetiap lantai	
			dengan luas lantai >300 m², disetiap jalan	
			terusan koridor.	
			2. Desain sistem pencahayaan keadaan	
			darurat beroperasi otomatis, memberikan	

			pencahayaan yang cukup, dan harus		
			memenuhi standar yang berlaku		
			3. Tanda eksis jeles terlihat dan dipasang		
			berdekatan dengan pintu yang memberi -		
No	Komponen	Penilaian	Kriteria penilaian		
			kan jalan keluar langsung pintu dari		
			suatu tangga, eksit horizontal dan pintu		
			yang melayani eksit		
			4. Bila eksit tidak terlihat secara langsung		
			dengan jelas oleh penghuni, harus		
			dipasang tanda petunjuk dengan tanda		
			panah penunjuk arah.		
			5. Setiap tanda eksit harus jelas dan pasti,		
			diberi pencahayaan yang cukup, dipasang		
			sedemikian rupa sehinga tidak terjadi		
			gangguan listri, tanda petunjuk arah		
			keluar harus memenuhi standar yang		
			berlaku.		
		С	Cahaya darurat dan petunjuk arah telah		
			dipasang sesuai dengan persyaratan, namun		
			tingkat illuminasinya telah berkurang,		
			karena kotor permukaan atau daya		
			illuminasinya menurun.		
		V	•		
		K	Cahaya darurat dan petunjuk arah terpasang		
			tidak memenuhi ketentuan baik tingkat		
			illuminasi, warna, dimensi, maupun		
			penempatannya.		
12	Listrik darurat	В	Daya yang disuplai sekurang-kurangnya		
			dari 2 sumber yaitu sumber daya listrik		

			PLN atau sumber daya darurat berupa	
			batere, generator, dll	
			2. Satuan instalasi kabel yang melayani	
			sumber daya listrik darurat harus	
			memenuhi kabel tahan api selama 60' -	
No	Komponen	Keandalan	Kriteria penilaian	
			satu daya dari sumber daya ke motor harus	
			memenuhi ketentuan.	
		С	Daya terpasang sesuai dengan poin "B",	
			namun kapasitas generator tidak memenuhi	
			persyaratan minimal.	
		K	Tidak ada sumber daya listrik cadangan	
13	Ruangan	С	Tersedia dengan peralatan relatif sederhana	
	pengendali		seperti CCTV, namun cukup dapat	
	operasi		memberikan dan atau membantu memonitor	
			bahaya kebakaran yang akan terjadi.	
		K	Tidak tersedia	

3) Proteksi Pasif

Tabel 2.10 Penilaian Komponen Parameter Proteksi Pasif

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Ketahanan api			36		
	struktru bangunan					
2	Kompartemenisasi			32		
	ruang					
3	Perlindungan			32		
	bukaan					
	Nilai Total					

Nilai Parameter Proteksi Pasif	26	

(Sumber : Erry, dkk – 2005, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

Tabel 2.11 Penjelasan Penilaian Komponen Parameter Proteksi Pasif

No	Komponen	Keandalan	Kriteria penilaian	
1	Ketahanan api	В	Ketahanan api komponen struktur	
	struktru bangunan		bangunan sesuai dengan yang	
			dipersyaratkan (tipe A, tipe B, tipe C)	
			yang sesuai dengan fungsi klasifikasi	
			bangunannya	
		С	Proteksi terhadap struktur bangunan	
			telah dilaksanakan, namun dibawah yang	
			seharusnya.	
		K	Tidak memenuhi semua kriteria tersebut	
			diatas.	
2		В	1. Berlaku untuk bangunan dengan luas	
			lantai	
			Konstruksi tipe A: 5000m ²	
			Konstruksi tipe B: 3500m ²	
			Konstruksi tipe C : 2000m ²	
			2. Luas lebih dari 18000m², volume	
			108000m ³ dilengkapi dengan	
			springkler, dikelilingi jalan msuk	
			kendaraan dan sistem pembuangan	
			asap otomatis dengan jumlah, tipe dan	
			cara pemasangan sesuai persyaratan	
			yang berlaku	
			3. Lebar jalan minimal 6 m, mobil	
			pemadam dapat masuk koleksi.	

		С	Semua kriteria dalam poin "B", namun		
			jumlah springkler kurang dari yang		
			dipersyaratkan.		
No	Komponen	Keandalan	Kriteria penilaian		
		K	Tidak memenuhi semua kriteria tersebut		
			diatas.		
3		В	1. Bukaan harus dilindungi, diberi		
			penyetop api		
			2. Bukaan vertikel dari dinding tertutup		
			dari bawah sampai atas disetiap lantai		
			diberi penutup tahan api.		
			3. Sarana proteksi pada bukaan:		
			a. Pintu kebakaran, jendela		
			kebakaran, pintu penahan asap dan		
			penutup api sesuai dengan standar		
			pintu kebakaran.		
			b. Daun pintu dapat berputar disatu		
			sisi		
			c. Pintu mampu menahan asap 200 C		
			d. Tebal daun pintu 35mm		
			4. Jalan keluar / masuk pada dinding		
			tahan api:		
			a. Lebar bukaan pintu keluar harus		
			tidak lebih Y2 dari panjang		
			dindingn tahan api.		
			b. Tingkat isolasi min.30 menit		
			c. Harus menutup sendiri / otomatis		
		С	Tidak memenuhi salah satu kriteria pada		
			penialaian baik " B "		

	K	Tidak memenuhi semua kriteria tersebut
		diatas.

(Sumber: Erry, dkk – 2015, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

2.7.3 Interpretasi dan Rekomendasi

Hasil Pemeriksaan Keandalan Sistem Kebakaran Bangunan (KSKB) harus dilakukan interpretasi dan rekomendasi.

a. Interpretasi

Interpretasi yang dilakukan pada hasil pemerikasaan sistem kebakaran bangunan antara lain :

- Keandalan keselamatan suatu bangunan disebut : (B) Baik, (C) Cukup, atau (K) Kurang bila nilai keandalan suatu komponen bangunan atau Nilai Keandalan Sistem Keselamatan Bangunan (NKSKB), tidak kurang dari batas terendah dari kategori baik sebagaiman tercantum dalm Tabel 2.3.
- 2) Untuk menjamin keselamatan dan kenyamanan gedung secara keseluruhan, Nilai KSKB tidak boleh kurang dari 80 %.

b. Rekomendasi

Rekomendasi diberikan pada bangunan yang nilai KSKB cukup atau kurang untuk dilakukan perbaikan. Rekomendasi tersebut antara lain :

- 1) Tergantung dari hasil pemeriksaan nilai keandalan sistem keselamatan bangunan (NKSKB) yang telah dihitung, maka rekomendasi dapat diajukan oleh tim pemeriksa yang bertujuan untuk mengembalikan kondisi Kurang (K) atau Cukup (C) menjadi Baik (B).
- 2) Pokok-pokok rekomendasi di jelaskan dalam Tabel 2.13

Tabel 2.12 Pokok-pokok Rekomendasi

Keandalan	Kondisi fisik komponen	Rekomendasi
	keselamatan kebakaran	(lihat c)
Baik (B)	Semua komponen sistem	(1), (2), (3)
(80% <nkskb<100%)< td=""><td>proteksi kebakaran (sistem</td><td></td></nkskb<100%)<>	proteksi kebakaran (sistem	
	proteksi aktif, sistem proteksi	
	pasif, sarana penyelamatan,	
	tapak) berfungsi sempurna,	
	sehingga gedung dapat	
	digunakan secara optimum,	
	dimana para pemakai gedung	
	dapat melakukan kegiatannya	
	dengan mendapat perlindungan	
	dari kebakaran yang baik	
Cukup (C)	Semua komponen sistem	(3), (4)
(60% < NKSKB < 80%)	proteksi kebakaran (sistem	
	proteksi aktif, sistem proteksi	
	pasif, saran penyelamatan,	
	tapak) masih berfungsi baik,	
	tetapi ada sub komponen	
	utilitas yang berfungsi kurang	
	sempurna, kadang-kadang	
	menimbulkan gangguan atau	
	kapasitasnya kurang dari yang	
	ditetapkan dalam desain/	
	spesifikasi, sehingga	

	kenyamanan dan fungsi ruang dan/atau gedung menjadi terganggu.	
Keandalan	Kondisi fisik komponen	Rekomendasi
	keselamatan kebakaran	(lihat c)
Kurang (K)	Semua komponen sistem	(4), (5)
NKSKB < 60%	proteksi kebakaran (sistem	
	proteksi aktif, sistem protaksi	
	pasif, sarana penyelamatan,	
	tapak) ada yang rusak/tidak	
	berfungsi, kapasitasnya jauh	
	dibawah dari nilai yang	
	ditetapkan dalam	
	desain/spesifikasi, sehingga	
	kenyamanan dan fungsi ruang	
	dan/atau gedung menjadi	
	sangat terganggu atau tidak	
	dapat digunakan secara total.	

(Sumber : Erry, dkk – 2015, Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung)

- c. Rekomendasi terhadap langkah pencegahan kebakaran gedung
 - 1) Pemeriksaan secara berkala
 - 2) Perawatan / pemeliharaan berkala
 - 3) Perawatan dan perbaikan berkala
 - 4) Penyetelan / perbaikan elemen
 - 5) Melengkapi komponen yang kurang

BAB III

METODOLOGI

3.1 Jenis dan Rancangan Penelitian

Penelitan yang dilakukan ini termasuk jenis penelitian observasional deskriptif. Melakukan observasi mengenai Keandalan Sistem Keselamatan Bangunan (KSKB) bahaya kebakaran gedung Museum Penerangan Taman Mini Indonesia Indah. Observasi ini mengacu kepada pedoman dan pengamatan teknis sistem proteksi kebakaran gedung baik peraturan pemerintah atau Standar Nasional Indonesia (SNI). Dari hasil tersebut tergantung keandalan sistem pencegahan kebakaran gedung Museum Penerangan dan rekomendasi yang di berikan.

3.2 Lokasi Penelitian

Penelitian ini dilaksanakan di gedung Museum Penerangan, yang beralamat Jl. Pintu II Taman Mini Indonesia Indah, Pondok Gede, Jakarta Timur.

3.3 Teknik Pengambilan Data

- a. Studi pustaka, yaitu mencari referensi dan *literature* yang terkait dengan sistem manajemen proteksi kebakaran terkhusus bangunan gedung yang akan menjadi data pelengkap yang menguatkan suatu data yang diperoleh dilapangan dan sebagai pembanding dengan data yang ada.
- b. Studi lapangan, dilakukan untuk melihat langsung penerapan proteksi kebakaran pada Museum Penerangna dengan menggunakan *check-list* data-data terkumpul dan kemudian diolah dan dianalisis, melalui:
 - Wawancara, yaitu metode pengambilan data primer secara lisan.
 Wawancara yang dilakukan untuk mendapatkan penjelasan dan klarifikasi atas permasalahan-permasalahan teknis yang terjadi di lapangan dengan menanyakan langsung kepada pihak yang terkait pengelolaan gedung.

2. Pengambilan data, yaitu pengumpulan data primer dan sekunder dari departemen terkait yang berhubungan dengan aspek yang sedang dikaji sebagai data penunjang dalam pembahasan penelitian ini.

3.4 Rancangan Penelitian

3.4.1 Rancangan lembar pengamatan (check list)

Rancangan lembar pengamatan (*check list*) yang akan dipakai untuk pengumpulan data dan pengamatan langsung di lapangan berisi semua variabel dan komponennya untuk penelitian ini adalah:

- a. Kelangkapan tapak
- b. Sarana penyelamatan
- c. Sistem proteksi aktif
- d. Sistem proteksi pasif

Dimana variabel atau komponen penilaiannya telah dijelaskan di bab 2. Contoh lembar pengamatan (*check list*) yang dibuat untuk penelitian terdapat pada lampiran A.

3.4.1 Cara Pengisian dan Penilaian Lembar Pengamatan

- a. Kelengkapan tapak, yang menjadi komponen penilaian adalah:
 - 1. Sumber air
 - 2. Jalan lingkungan
 - 3. Jarak antar bangunan
 - 4. Hidran halaman
- b. Sarana penyelamatan, yang menjadi komponen penilaian adalah:
 - 1. Jalan keluar
 - 2. Konstruksi jalan keluar
 - 3. Landasan helikopter
- c. Proteksi aktif, yang menjadi komponen penilaian adalah:
 - 1. Deteksi alarm
 - 2. Siemes conection
 - 3. APAR
 - 4. Hidran gedung

- 5. Springkler
- 6. Sistem pemadam luapan
- 7. Pengendalian asap
- 8. Deteksi asap
- 9. Pembuangan asap
- 10. Lift kebakaran
- 11. Cahaya darurat
- 12. Listrik darurat
- 13. Ruang pengendalian operasi
- d. Proteksi pasif, yang menjadi komponen penilaian adalah:
 - 1. Ketahanan api struktur bangunan
 - 2. Kompartemenisasi ruang
 - 3. Pelindungan bukaan

3.5 Pengolahan Data

Untuk Keandalan Sistem Keselamatan Bangunan (KSKB) maka data-data yang di dapat dilakukanan pengolahan data, cara pengolahan data tiap parameter variabel dan komponennya sebagaimana yang telah di jelaskan pada Bab 2, yaitu :

- a. Menghitung nilai keandalan kelengkapan tapak
- b. Menghitung nilai keandalan sarana penyelamatan
- c. Menghitung nilai keandalan proteksi aktif
- d. Menghitung nilai keandalan proteksi pasif

Selanjutnya, nilai keandalan sistem keselamatan bangunan dihitung jumlah nilai keandalan keselamatan bangunan terhadap kelengkapan tapak, sarana penyelamatan, proteksi aktif dan proteksi pasif.

3.6 Analisis

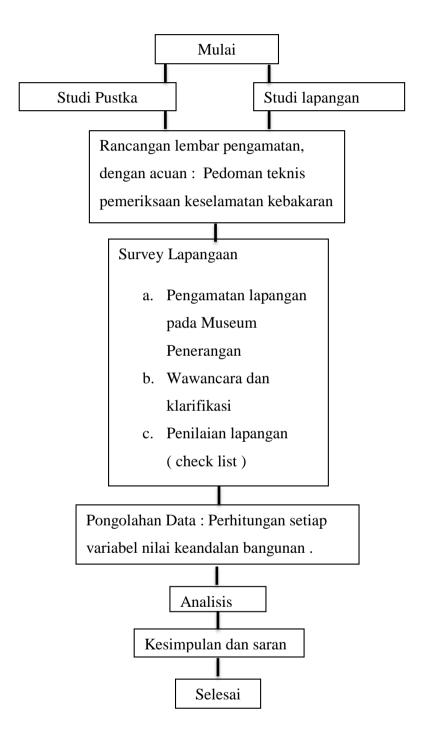
Analisis data hasil pengolahan nilai keandalan ialah:

- a. Nilai keandalan setiap individu parameter (variabel)
- b. Nilai kumulatif parameter (variabel) keandalan

Jumlah nilai keandalan:

1) Baik (B) : Nilai > 80 - 100

2) Cukup (C) : Nilai 60 – 80


3) Kurang (K) : Nilai < 60

Sistem keandalan yang baik harus memiliki nilai tidak kurang dari 80.

3.7 Kesimpulan dan saran

Bagian yang berisi dari hasil analisis yang di simpulkan dari setiap komponen penilaian dan kemudian diberi saran pada komponen yang memiliki nilai yang kurang terhadap keandalan bangunan.

Berdasarkan penjelasan diatas, maka diagram alir penelitian di perlihatkan pada gambar di bawah ini.

Gambar 3.1 Diagram Alir Penelitian

BAB IV PENGOLAHAN DATA DAN ANALISIS

4.1 Gambaran Umum Taman Mini Indonesia Indiah (TMII)

Taman Mini Indonesia Indah (TMII) merupakan kawasan wisata rekreasi yang di dalamnya terdapat kebudayaan nusantara Indonesia yang mewakili 26 Provinsi Indonesia (pada tahun 1975). TMII gambaran kekayaan nusantara dari adat istidat mulai dari pakaian yang dipamerekan, rumah adat yang terdapat anjungan dari barat hingga paling timur Indonesia. Alat —alat peraga dari masing-masing daerah, terdapat berbagai museum, taman flora dan fauna, kerajinaan tangan khas daerah dan lain-lain. TMII berlokasi di Jakarta Timur dengan area seluas 150 ha yang di tengah-tengah ada sebuah danau buatuan yang menggambarkan miniatur Negara kepulauan Indonesi. Dilengkapi dengan wahana kereta gantung , aeromovel, bumper car dan lain-lain.

Gagasan pembangunan Taman Mini Indonesia Indah awalnya di cetuskan oleh Ibu Negara ke-2 Republik Indonesia yaitu Siti Hartinah atau yang sering disebut Ibu Tien Soeharto. Ide ini di kemukakan pada tanggal 13 Maret 1970 pada suatu pertemuan di jalan Cendana no.8 Jakarta. Kemudian melalui Yayasan Harapan Kita yang di miliki Ibu Tien di mulailah suatu proyek miniatur Indonesia "Indonesia Indah" mulai dibangun tahun 1972 dan tiga tahun kemudian di resmikan pada tanggal 20 April 1975.

4.2 Museum Penerangan

Museum penerangan merupakan museum yang menggambarkan perkembangan sejarah Indonesia yang berawal dari kegiatan penyampaian berita yaitu penerangan kepada masyarakat Indonesia yang pada masa melawan penjajah, kemudian masa setelah merebut kemerdekaan Indonesia hingga sekarang ini. Penerangan atau berita yang saat ini menjadi sebuah kebutuhan setiap orang dan yang terus berkembang dan berubah setiap saat ditambah lagi kemudahan mendapatkan penerangan tersebut.

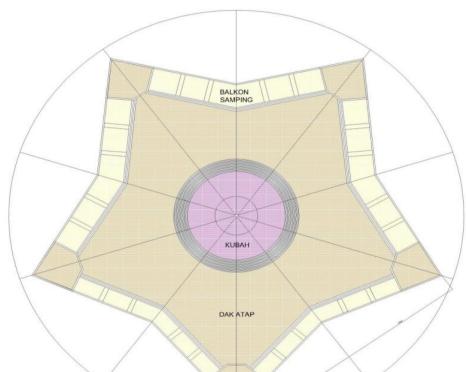
Berdasarkan jasa penerangan pada pra-kemerdekanan dan setelah kemerdekaan Indonesia terbentuklah suatu pemikiran untuk mendirikan sebuah bangunan museum yang dimana didalamya menjelaskan bagaimana penerangan berperan dalam membangkitkan nasionalisme masyakarat untuk mengusir penjajah dan mendirikan Negara Indonesia pada tahun 1945. Pada periode pemerintahan 1950-1959 pelaksanaan demokrat parlementer, Peran penerangan pada masa itu untuk menegakkan semangat Negara Kesatuan Republik Indonesia. Selanjutnya, pada tahun 1959-1965 pada kabinet demokrasi terpimpin, penerangan berperan menegakkan Ideologi Pancasila dan pada masa-masa pemerintahan selanjutnya hingga sekarang peran penerangan sangat penting untuk kemajuan suatu bangsa.

Sebagaimana diketahui bahwa tugas penerangan adalah untuk mempersatukan suluruh Bangsa Indonesia untuk lebih mencitai Negara sendiri dengan menggunakan media massa dan organisasi sederhana pada mulanya sehingga perkembangan dari zaman ke zaman perlu didokumentasikan pada suatu gedung museum. Dengan adanya museum ini diharapkan dapat memberikan gambaran kepada generasi Indonesia di masa mendatang, dan dapat melihat bagaiman perjuangan terdaluhu, terlebih di bidang penerangan dalam meningkatkan nasionalisAme dan semangat masyarakat untuk melawan pejajahan dan setelah masa kemedekaan.

Ide pembangunan ini kemudian di dukung oleh ibu Negara pada masa itu, Ibu Tien Suharto yang didirikan di lokasi TMII dan dikelola oleh Yayasan Harapan Kita melalui surat keputusan No. 005/KPTS/ YHK/ BP3-TMII/ IX/1991 tanggal 11 September 1991. Dengan adanya museum penerangan di TMII diharapkan dapat membuat para pengunjung menjadikannya sebuah pilihan untuk berwisata sekaligus menambah pengetahuan dan wawasan nusantara.

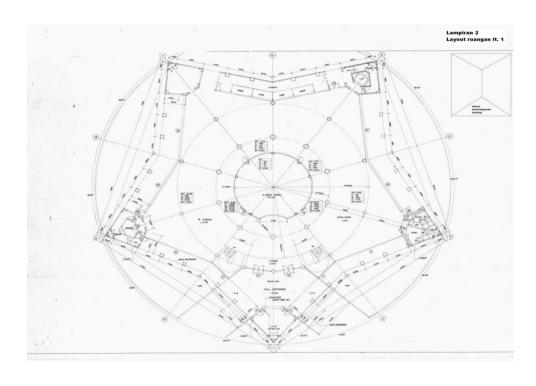
4.3 Data-Data Museum Penerangan

Luas tanah : $10 850 \text{ m}^2$ Luas bangunan : 3.980 m^2

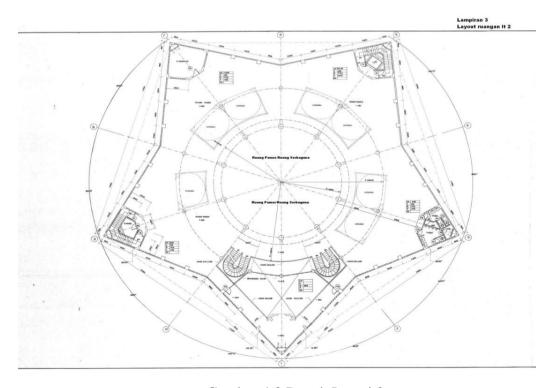

Bentuk bangunan : Bintang bersudut lima (mengandung arti dasar ideologi

Indonesia yaitu lima unsur pancasila dan lima

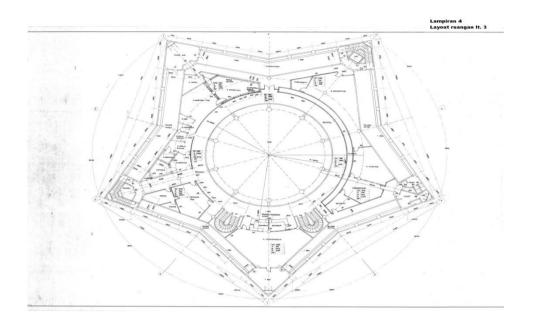
unsur atau sumber penerangan yaitu tatap muka tradisional, radio, televise, film dan pers grafika).


Jumlah lantai

: 3 lantai (bermakna menggambarkan kehidupan masa lalu, masa sekarang, dan masa yang akan datang).



Gambar 4.1 Denah Umum Museum Penerangan


(Sumber: Museum Penerangan)

Gambar 4.2 Denah Lantai 1 (Sumber: Museum Penerangan)

Gambar 4.3 Denah Lantai 2 (Sumber: Museum Penerangan)

Gambar 4. 4 Denah Lantai 3 (Sumber: Museum Penerangan)

4.3 1 Koleksi tiap lantai

a. Koleksi Lantai 1

Ketika akan memasuki gedung museum terdapat sebuah tulisan pada dinding atas pintu utama masuk museum "Dahana Ambuka Wiwaraning Bumi "yang memiliki arti cahaya atau api yang membuka kegelapan di bumi. Hal ini sama dengan tugas penerangan memberikan pemahaman dan informasi yang benar kepada masyarakat. Berikut merupakan beberapa koleksi dari sekian banyak koleksi yang dimiliki Museum Penerangan pada lantai 1, 2 dan 3 yang bersumber dari panduan koleksi Museum Penerangan TMII:

1) Pohon kehidupan

Bahan : Kayu Pohon "Mangga Kweni"

Prakarsa : (Almh) Ibu Tien Soeharto

Folosofi : " Meski di bolak balik penerangan harus tetap mengandung

kebenaran "

Gambar 4.5 Pohon Kehidupan (Sumber: Museum Penerangan)

2) Pronyektor film

Merk: Simplex

Bahan: Besi

Ukuran: P. L (155cm x 40 cm)

Proyektor 35 mm ini digunakan tahun 1940-an dan sudah menggunkanan motor listrik, merupakan sumbangan GPBI (Gabungan Perusahaan Bioskop Indonesia).

Gambar 4.6 Proyektor film Kamera Perekam "Rapat Kabinet RI Pertama" (Sumber: Museum Penerangan)

3) Digunakan untuk merekam rapat kabinet I (18 Agustus 1995) dan rapat raksasa di lapangan IKADA (19 September 1945).

Berat : 4 kg

Ukuran : P.L.T (20cm x 15cm x 22cm)

Gambar 4.7 Kamera Peremkam Rapat Kabinet RI Pertama (Sumber: Museum Penerangan)

4) Mesin Setting

Tahun: 1886

Merk : Intertype

Buatan : Chicago (Amerika)

Bahan : Besi

Ukuran : P.L.T (2m x 2m x 1,75m)

Gambar 4.8 Mesin Setting

(Sumber: Museum Penerangan)

b. Koleksi Lantai 2

Pada lantai dua terdapat beberapa diorama, yang salah satunya menceritakan bagaimana penerangan dilakukan pada awalnya yaitu di mulai dari kegiatan musyawarah yang mengumpulkan masa atau masyarakan untuk berkumpul pada suatu tempat untuk mendapatkan informasi yang berguna untuk kemudian akan di jadikan sebuah landasan dalam mengambil keputusan secara musyawarah. Diorama terdapat 7 buah di lantai dua yang di lengkapi dengan suara dan pencahayaan yang mendukung, dan juga terdapat relief yang memiliki makna jika penerangan tidak dilakukan dengan benar atau memanipulasi masyarakat banyak maka terjadi bencana yang merugikan, membahayakan dan menghambat kemajuan suatu bangsa. Berikut beberapa koleksi Museum Penerangan di lantai dua:

1) Relief

Bahan : Hard board

Panjang: 150 m

Materi : Sejarah komunikasi sosial yang dijadikan sejarah penerangan

Gambar 4.9 Relief Sejarah Komunikasi

(Sumber: Museum Penerangan)

C. Koleksi Lantai 3

Adapun di lantai tiga, terdapat tiga studio mini dari RRI (Radio Republik Indonesia), studio mini TVRI (Televisi Republik Indonesia), PFN (Produksi Film

Nasional), dan display foto transparan. Berikut beberapa koleksi yang terdapat di lantai tiga.:

Gambar 4.10 Studio Mini RRI (Radio Republik Indonesia)
(Sumber : Museum Penerangan)

Gambar 4.11 Studio Mini TVRI (Televisi Republik Indonesia)
(Sumber : Museum Penerangan)

1. Instalasi Listrik 800 KVA

a. Instalasi titi nyala lampu : 625 titik
b. Instalasi stop kontak : 125 buah
c. Panel power/penerangan : 16 buah

2. Penakal Pentir

- a. (Satu) unit menggunakan sistem E. F (Elektrostatik) non radio aktif
- 3. Instalasi telepon
 - a. 2 (dua buah) saluran perumtel menggunkan digital key telepon dengan 12 extention (No. Telp. (021) 840 8440 (021) 840 8505)
- 4. Instalasi Fire Hydrant

Instalasi fire hydrant terdiri dari:

a. *Indoor* hidran box : 6 buah

b. Outdoor hidran box : 3 buah

c. Pilar : 3 buah

d. Siamesse conection : 1 buah

Menggunakan 3 buah pompa

- a. Jockey pump
- b. Mine fire pump
- c. Stanby diesel fire pump
- 5. Instalasi Fire Alarm

Menggunakan fire alarm control panel 8 zona, terdiri dari

- a. Heat detector
- b. Hydrant box
- 6. Halaman dan Taman
 - a. Taman dan jalan mengelilingi gedung
 - Pagar : Bahan stainlees steel pada sisi kanan dan bahan BRC pada sisi depan kiri
 - c. Tiang bendera satu buah
 - d. Tempat penjualan tiket 2 buah.

Gambar 4.12 Hidran Gedung

Gambar 4.13 APAR

Gambar 4.14 Tangga darurat

Gambar 4.15 Hidran

Museum Penerangan memiliki puncak gedung memiliki bentuk silinder yang melambangkan gentongan yang merupakan penerangan tradisional masyarakat Indonesia. Bangunan Silinder yang berada di puncak gedung adalah menyangga menara antena yang juga melambangankan penerangan modern sahingga dari kedua bangunan tersebut memiliki arti bahwa penerangan tradisional dan modern saling berkaitan dalam memperjuangkan kemerdekaan dan setelah kemerdekaan penerangan terus berperan dalam mendukung pembangunan dan kemajuan Bangsa Indonesia.

Pada halaman Museum Penerangan ada air mancur yang terdiri sebuah tugu penyangga simbol penerangan "Api Nan Tak Kujung Padam" yang di kelilingi lima pantung yang mengisyaratkan petugas penerangan yang siap setiap saat memberikan penerangan kepada masyarakat melalui media seperti radio, televisi, tatap muka secara tradisional, pers grafika dan fim sedangkan air mancur memiliki arti komunikasi yang di lakukan timbal balik antar masyarakat dan pemerintah dengan media masa sebagai penghubungnya. Kemudian pada sisi kanan gedung ada empat buah mobil yaitu mobil siaran luar RRI, siaran luar tv, mobil produksi film dan muviani kuda (mobil unit mini kuda) yang digunakan pada saat memberikan penerangan kepada daerah-daerah yang sulit di jangkau kendaraan pada umumnya. Ibu Tien Soeharto menyumbangkan sebuah mesin cetak yang tempatkan pada sisi lain di luar gedung, mesin cetak ini memiliki sejarah panjang dalam penggunakaan yaitu memberikan penerangan pada masa penjajahan Belanda dan setelah Indonesia merdeka yang mengawali pembangunan nasional.

4.3.2 Keandalan Sistem Keselamatan Bangunan

Dari hasil survey / pemeriksaan terhadap KSKB diperolah data sebagai berikut:

a. Parameter Kelengkapan Tapak

Tabel 4.1 Komponen Kelengkapan Tapak

No	SUB KSKB	Penilaian	
Kelengkapan Tapak		Huruf	Angka
1	Sumber air	В	100
2	Jalan lingkungan	В	100
3	Jarak antar bangunan	В	100
4	Hidran halaman	С	75

b. Parameter Saran Penyelamatan

Tabel 4.2 Komponen Sarana Penyelamatan

No	SUB KSKB	Penilaian		
Sarana Penyelamatan		Huruf	Angka	
1	Jalan keluar	C 75		
2	Konstruksi jalan keluar	В	85	
3	Landasan Helikopter	K	0	

c. Parameter Proteksi Aktif

Tabel 4.3 Komponen Proteksi Aktif

No	SUB KSKB	Penilaiar	ı
Prote	eksi Aktif	Huruf	Angka
1	Deteksi dan alarm	С	75
2	Siemes conection	В	82
3	APAR	K	30
4	Hidran gedung	K	50
5	Sprinkles	K	0
6	Sistem pemadam luapan	С	70
7	Pengendalian asap	K	60
8	Deteksi asap	С	70
9	Pembuangan asap	С	70
10	Lift kebakaran	K	0
11	Cahaya darurat	K	0
12	Listrik darurat	K	0
13	Ruang pengendalian operasi	С	70

d. Parameter Proteksi Pasif

Tabel 4.4 Komponen Proteksi Pasif

No	SUB KSKB	Penilaian		
Prote	ksi Pasif	Huruf Angka		
1	Ketahanan api struktur	В	83	
	bangunan			
2	Kompartemenisasi ruang	С	75	
3	Perlindungan bukaan	С	77	

4.4 Pengolahan Data Keandalan Sistem Keselamatan Bangunan (KSKB)

Dalam rangka menetapkan Keandalan Sistem Keselamatan Bangunan (KSKB), maka di peroleh dari survey / pemeriksaan pada butir 4.3.2 yaitu penialain komponen atau variable yaitu kelengkapan tapak, saran penyelamatan, proteksi aktif, dan proteksi pasif dilakukan pengolahan dengan mengacu kepada landasan teori di bab II.

1. Penilaian Kelengkapan Tapak

Penilaian terhadap kelengkapan tapak yang memberi pengaruh KSKB dilakukan sesuai dengan teori di Bab 2 butir 2.7.2 hasil pengolahan diperlihatkan padan tabel 4.5

Tabel 4.5 Penilaian Kelengkapan Tapak

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Sumber Air	В	100	27	27	27
2	Jalan	В	100	25	25	25
	lingkungan					
3	Jarak antara	В	100	23	23	23
	bangunan					

4	Hidran halaman	С	75	25	18,75	18,75
No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		Nilai
	Nilai Total					
	Nilai Parameter K	25		23,4375		

Tabel 4.6 Hasil penilaian komponen parameter kelengkapan tapak (bobot 25%)

No	Komponen	Keandalan	Kriteria Penilaian		
1	Sumber air	Bobot =	Tersedia dengan kapasitas yang memenuhi		
		27%	persyaratan minimal terhadap fungsi		
			bangunan.		
		Penilaian =	Penjelasan:		
		100	Sumber air: Lingkungan tersebut diatas		
			harus direncanakan sedemikian rupa		
		Nilai = 27	sehingga tersedia sumber air berupa hidran		
			halaman, sumur kebakaran atau reservoir		
		Keandalan	air dan sebagianya yang memudahkan		
		= B	instansi pemadam kebakaran untuk		
			menggunakannya, sehingga setiap rumah		
			atau bangunan gedung dapat dijangkau oleh		
			pancaran air unit pemadam kebakaran dari		
			jalan di lingkungannya.		
			Berdasarkan dari penjelasan pihak		
			pengelola ketersediaan air sangat		
			mencukupi, karena selama ini atau		
			berjalannya pengoprasian gedung tidak		
			pernah kekurangan air. Ketersediaan air		
			sangat melimpah, ada 2 sumber air ; yang 1		
			memiliki penampungan air sementara lebar		

			dan kedalamanannya= 6 x 3 meter (jika		
			dilakukan pengisian pada bak		
No	Komponen	Keandalan	Kriteria penilaian		
			penampungan air dibutuhkan sekitar 3		
			hari).		
		С	Tersedia dengan kapasitas dibawah		
			persyaratan minimal terhadap fungsi		
			bangunan		
		K	Tidak tersedia		
2	Jalan		Memenuhi sebagaian besar persyaratan		
	lingkungan	Bobot =	kriteria pada penjelasan bab 2. Penjelasan :		
		25%	Jalan lingkungan; Untuk melakuka proteksi		
			terhadap meluasnya kebakaran dan		
		Penilaian =	memudahkan operasi pemadam, maka di		
		100	dalam lingkungan bangunan gedung harus		
			tersedia jalan lingkungan dengan		
		Nilai = 25	perkerasan agar dapat dilalui oleh		
			kendaraan pemadam kebakaran.		
		Keandalan	Di Meseum penerangan tersedia dengan		
		= B	lebih dari 6 m atau sekitar 10 – 15 meteran		
			sehingga mudah dilalui atau di jangkau		
			kendaraan kebakaran.		
		С	Tersedia dengan lebar kurang dari		
			persyaratan minimal.		
		K	Tidak tersedia		
3	Jarak antar	Bobot =	Sesuai dengan persyaratan (Tinggi sd 8: 3		
	bangunan	23%	m)		
			Jarak Antar Bangunan :		
		Penilaian =	Untuk melakukan proteksi terhadap		
		100	meluasnya kebakaran, harus disediakan		

			jalur akses mobil pemadam kebakaran dan		
		Nilai = 23	ditentukan jarak minimum antar bangunan		
No	Komponen	Keandalan	Kriteria penilaian		
		Keandalan	gedung dengan memperhatikan, sebagai		
		= B	berikut.		
			Tabel 2.2.3 - Jarak Antar Bangunan Gedung		
			No. Tinggi Bangunan Gedung Jarak Minimum Antar Bangunan (m) Gedung (m)		
			1. s.d. 8 3		
			2. >8 s.d. 14 >3 s.d. 6 3. >14 s.d. 40 >6 s.d. 8		
			4. > 40 > 8		
			Jarak minimum antar bangunan gedung tersebut tidak dimaksudkan untuk menentukan garis sempadan bangunan gedung.		
		С	Tidak sesuai Persyaratan (Tinggi 8 s/d 14 :		
			6 m; tinggi > 40m: >8 m)		
		K	Tidak ada jarak dengan bangunan		
			sekitarnya.		
4	Hidran	В	1.Tersedia dihalaman pada tempat mudah		
	halaman		dijangkau		
			2.Berfungsi secara sempurna dan lengkap		
			3.Suplay air 38 l/detik dan bertekanan 35		
			Bar		
		Bobot =	Tersedia, tetapi tidak berfungsi secara		
		25%	sempurna atau suplai air dan tekanannya		
			kurang daripada persyaratan minimal.		
		Penilaian =	Penjelasan: Hidran halaman, adalah alat		
		75	yang dilengkapi dengan slang dan mulut		
			pancar (nozzle) untuk menglirkan air		
		Nilai =	bertekanan yang digunakan bagi keperluan		
		18,75	pemadaman kebakaran dan diletakkan di		
			halaman bangunan gedung.		

		Keandalan	1. Dalam situasi di mana diperlukan
		= C	lebih dari satu hidran halaman,
No	Komponen	Keandalan	Kriteria penilaian
			maka hidran-hidran tersebut harus
			diletakkan sepanjang jalur akses
			2. mobil pemadam sedemikian hingga
			tiap bagian dari jalur tersebut berada
			dealam jarak radius 50 m dari hidran
			3. Pasokan air untuk hidran halaman
			harus sekurang-kurangnya 38
			liter/detik pada tekanan 3,5 bar,
			serta mampu mengalirkan air
			minimmal selama 30 menit.
		K	Tidak tersedia sama sekali

2. Penilaian Sarana Penyelamatan

Penilaian terhadap saratan penyelamatan yang memberi pengaruh KSKB dilakukan sesuai dengan teori di Bab 2 butir 2.7.2 hasil pengolah diperlihatkan pada tabel berikut:

Tabel 4.7 Penilaian sarana penyelamatan (bobot: 25%)

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Jalan keluar	С	75	38	28,5	28,5
2	Konstruksi jalan	В	85	35	29,75	29,75
	keluar					
3	Landasan	K	0	27	0	0
	helikopter					
	Nilai Total					58,75

Nilai Parameter Sarana Penyelamatan	25	14.562

Tabel 4.8 Hasil penilaian komponen parameter sarana penyelamatan (bobot 25%)

No	Komponen	Keandalan	Kriteria Penilaian
1	Jalan Keluar	В	1. Minimal perlantai 2 exit dengan tinggi
			efektif 2,5 m. (memenuhi)
			2. Setiap exit harus terlindungi dad
			bahaya kebakaran
			3. Jarak tempuh maksimal 20 meter dari
			pintu keluar. (memenuhi)
			4. Ukuran Minimal 200 cm (tidak
			memenuhi, karena hanya memiliki
			lebar 1,5 m pada tangga darurat)
			5. Jarak suatu exit tidak > 6 in(memenuhi)
			6. Pintu dari dalam tidak buka langsung
			ke tangga (memenuhi)
			7. Penggunaan pintu ayun tidak
			mengganggu proses jalan keluar (tidak
			memenuhi)
			8. Disediakan lobby bebas asap dengan
			TKA 60/60/60 terdapat pintu keluar
			diberi tekanan positif
			Penjelasan
			Tingkat Ketahanan Api (TKA), adalah
			tingkat ketahanan api yang diukur dalam
			satuan menit, yang ditentukan
			berdasarkan standar uji ketahanan api
			untuk kriteria sebagai berikut :
			a. ketahanan memikul beban (kelayakan
			struktur);

			b. ketahanan terhadap penjalaran api
			(integritas);
No	Komponen	Keandalan	Kriteria penilaian
			c. ketahanan terhadap penjalaran panas
			(isolasi); yang dinyatakan berurutan.
			9. Exit tidak boleh terhalang (tidak
			memenuhi)
			10. Exit menuju ke ruang terbuka
			(memenuhi)
		Nilai =	Setengah dari kriteria point "B" yang
		28,5	terpenuhi.
			Penjelasan
		Keandalan	Setiap pintu pada saran jalan keluar harus
		= C	dari jenis angsel sisi atau pintu ayun.
		Bobot =	Pintu harus dirancang dan dipasang
		38%	sehingga mampu berayun dari posisi
			manapun hingga mencapai posisi terbuka
		Penilaian =	penuh.
		75	
		K	Tidak memenuhi dari kriteria poin "B"
2	Konstruksi jalan	Bobot =	1. Konstruksi tahan minimal 2 jam
	keluar	35%	(memenuhi).Penjelasan:Karena
			berdasarkan penjelasan yang didapat
			dari hasil wawancara pihak pengelola
		Penilaian =	gedung Museum Penerangan bahwa
		85	pihak pengelolah menyatakan
			konstruksi bangunan kuat dan bagus
		Nilai =	terhadap ketehanan api karena terbuat
		29,75	sebagian besar bangunan terdiri dari
			marmer dan keramik . (catatan: data

		Keandalan	bangunan sangat tidak lengkap
		= B	namun-
No	Komponen	Keandalan	Kriteria penilaian
			Hal ini dapat dilihat secara langsung pada bangunan). 1. Harus bebas halangan. (tidak memenuhi) 2. Lembar minimal 200 cm (memenuhi) 3. Jalan terusan yang dilindungi terhadap kebakaran, bahan tidak mudah terbakar Langit-langit punya ketahanan penjalaran api tidak < 60 menit. (memenuhi sebagian besar karena struktur bangunan kokoh, walau pun ada beberapa bagian terdapat dinding dari kayu seperti diorama-diorama). 4. Pada tingkat tertentu elemen bangunan bisa mempertahankan stabilitas struktur bila terjadi kebakaran. (memenuhi) 5. Dapat mencegah penjalaran asap kebakaran (memenuhi) 6. Cukup waktu untuk evakuasi penghuni (memenuhi) 7. Akses ke bangunan harus disediakan bagi tindakan petugas kebakaran

		С	Setengah dari kriteria dari poin "B" yang
			terpenuhi
		K	Tidak memenuhi kriteria dari poin "B"
3	Landasan	В	1. Hanya pada bangunan tinggi minimal
	Helikopter		60 m
No	Komponen	Keandalan	Kriteria penilaian
			2. Konstruksi atap kuat menahan bebaan
			helikopter
			3. Dilengkapi dengan tanda-tanda untuk
			pendaratan baik warna, bentuk
			maupun ukurannya.
			4. Dilengkapi dengan alat pemadam api
			dengan bahan busa dan peralatan
			bantu evakuasi lainya.
			Ketentuan lain bagi pendaratan
			disesuaikan dengan peraturan yang
			terkait dalam bidang penerbangan
		С	1. Tanda dan perlengkapan pendaratan
			tidak terlihat dengan baik.
			2. Warna tanda telah kusam dan kolor
		Bobot =	Tidak memenuhi standar atau persyartan
		27%	yang berlaku.
			Penjelasan: Gedung tidak mempunyai
			landasan helikopter
		Penilaian =	
		0	
		Nilai = 0	

Keandalan	
= K	

3. Penilaian Proteksi Aktif

Penilaian terhadap proteksi aktif yang memberi pengaruh KSKB dilakukan sesuai dengan teori di Bab 2 butir 2.7.2 hasil pengolahan diperlihatkan pada tabel berikut

Tabel 4.9 Penilaian Proteksi Aktif

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah
			Penilaian	(%)		nilai
1	2	3	4	5	6	7
1	Deteksi dan alarm	С	75	8	6	6
2	Siemes conection	В	82	8	6,56	6,56
3	APAR	K	30	8	2,4	2,4
4	Hidran gedung	K	50	8	4,0	4,0
5	Springkler	K	0	8	0	0
6	Sistem pemadam	С	70	7	4,9	4,9
	luapan					
7	Pengendalian asap	K	60	8	4,8	4,8
8	Deteksi asap	С	70	8	5,6	5,6
9	Pembuangan asap	С	70	7	4,9	4,9
10	Lift kebakaran	K	0	7	0	0
11	Cahaya darurat	K	0	8	0	0
12	Listrik darurat	K	0	8	0	0
13	Ruang pengendalian	С	70	7	4,9	4,9
	operasi					

Nilai Total				
Nilai Parameter Proteksi Aktif			10,574	

Tabel 4.10 Hasil Penilaian Proteksi Aktif (bobot 25%)

No	Komponen	Keandalan	Kriteria Penilaian
2	Deteksi dan alarm	В	1. Perancangan dan pemasangan sistem
			deteksi dan alarm kebaran sesuai SNI
			03-3986
			2. Sistem deteksi dan alarm harus
			dipasang pada semua bangunan kecuali
			kelas 1a
			3.Tersedia detektor panas
			4. Dipasang alat manual pemicu alarm
			5. Jarak tidak > dari 30 m dari titik alarm
			manual
		Bobot =	Perancangan sistem deteksi dan alarm
		8%	kebakaran kebakaran sesuai SNI 03-3986,
			namun pemasangannya tidak sesuai SNI
			03-3986
		Penilaian =	Penjelasan: Deteksi dan alarm ada namun
		75	tidka berfungsi sebagaimana mestinya atau
		Nilai = 6	rusak.
		Keandalan	
		= C	

		С	Tidak sesuai dengan persyaratan
			perancangan maupun pemasangan
2	Siemes conection	Bobot =	. Tersedia dan ditempatkan pada lokasi
		8%	yang mudah dijangkau mobil pemadam
			kebakaran.
		Penilaian =	. Diberikan tanda petunjuk sehingga
		82	mudah dikenali
			Penjelasan: Tersedia dan mudah
No	Komponen	Keandalan	Kriteria penilaian
		Nilai = 6,56	dijangkau petugas pemadam kebakaran
			tetapi tidak memimiliki tanda tanda
		Keandalan	petunjuk yang mudah dikenali.
		= B	Bila tutup sambungan pemadam
			kebakaran (siemes) tidak ada pada
			tempatnya, bagian dalam sambungan
			pemadam kebakaran harus diperiksa jika
			ada kemungkanan terjadi sumbatan atau
			halangan.
			Sambungna pemadam kebakaran
			(siemes) harus diinspeksi setiap 3 bulan
			(kwartal) untuk memastikan sebagai
			berikut:
			a. Tampak jelas dan dapat diakses
			b.Tutupnya ada dan tidak rusak
			c. Ada tanda identifikasi
		С	Tersedia, namun sulit dijangkau secara
			mudah dari mobil pemadam
		K	Tidak tersedia sebagaimana yang
			dipersyaratkan.

3	Pemadam api	В	1. Jenis APAR sesuai SNI 03-3988
	ringan		2. Jumlah sesuai dengan luasan
			banguanannya
			3. Jarak penempatan antar maksimal 25m
		С	1. Jenis Apar sesuai dengan SNI 03-3988
			2. Kurang dari jumlah sesuai dengan
			luasan bangunannya.
			3. Jarak penempatan antar alat maksimal
			25 m
No	Komponen	Keandalan	Kriteria penilaian
		Bobot =	Jenis dan jumlah yang dipasang tidak
		8%	sesuai dengan yang dipersyaratkan dalam
			SNI 03-3988.
		Penilaian =	Penjelsan: Jumlah APAR hanya sekitar 6
		30	buah dan peletakkanya di gudang yang
			tidak diletakkan dan digunakan
		Nilai = 2,4	sebagaimana mestinya.
		Keandalan	
		= K	
4	Hidran Gedung	В	1. Tersedia sambungan slang diameter 35
			mm dalam kondisi baik, panjang slang
			minimal 30m dan tersedia kontak
			untuk menyimpan.
			2. Pasokan air cukup tersedia untuk
			kebutuhan sistem sekurang-kurangnya
			untuk 45'.
			untuk +3 .

		С	 Bangunan kelas 4, luas 1000 m² /bh (Kompartemen tanpa partisi), 2 buah / 1000 m (Kompartemen dengan partisi) Bangunan kelas 5, luas 800m²/ buah tanpa partisi, dan 2 bh/800m² dengan partisi. (Catatan: partisi = dinding; bh = buah) Tersedia sambungan slang diameter 35 mm, panjang slang minimal 30 m dan tersedia kontak untuk menyimpan.
No	Komponen	Keandalan	Kriteria penilaian
			2. Bangunan Kelas 4 hanya tersedia 1
			buah perluas 1000m², baik pada ruang
			kompartemen tanpa partisi maupun
			kompartemen dengan partisi.
			Penjelasan: Kompartemenisasi, adalah
			usaha untuk mencegah penjalaran
			kebakaran dengan cara membatasi api
			dengan dinding, lantai, kolam, balok
			yang tahan terhadap api untuk waktu
			yang sesuai dengan kelas bangunan
			gedung.
			3. Bangunan kelas 5, hanya tersedia 1 buah
			perluas 800 m ² baik pada ruang
			kompartemen tanpa partisi, maupun
			kompartemen dengan partisi
		Bobot =	Tersedia sambungan slang diameter 35
		8%	mm, panjang slang minimal 30 m dan

		Penilaian =	tersedia kontak untuk menyimpan namun
		50	kondisi kurang terawat.
			Penjelasan: Kelas 9b (Bangunan
		Nilai = 4	pertemuan, termasuk bengkel kerja,
			laboratorium atau sejenisnya di sekolah
			dasar atau sekolah lanjutan, hal, bangunan
		Keandalan	peribadatan, bangunan budaya atau
		= K	sejenisnya, tetapi tidak termasuk setiap
			bagian dari bangunan yang merupakan
			kelas lain.
No	Komponen	Keandalan	Kriteria penilaian
6	Springkler	В	1. Jumlah perletakan dan jenis sesuai
			dengan persyaratan
			2. Tekanan catu air springkler pada titik
			terjauh ($0.5-2.0$) kg/cm ²
			3. Debit sumber catu air minimal (40-200
) liter /menit per kepala springkler.
			4. Jarak kepala springkler kedinding
			kurang dari ½ jarak antar kepala
			springkler
			5. Jarak max. springkler : Bahaya
			kebakaran ringan dan sedang -4,6 m.
			Bahaya kebakaran berat -3, 7m.
			6. Dalam ruang tersembunyi, jarak langit-
			langit dan atap 80 cm, dipasang jenis
			kepala springkler dengan pancaran
			keatas.

		С	1. Jumlah, perletakkan dan jenis sesuai
			dengan persyartan
			2. Tekanan catu air springkler pada titik
			terjauh (0,5-2,0) kg/ cm2
			3. Debit sumber catu air minimal (
			40-200) liter / menit per kepala srikler.
			4. Jarak springkler : Bahaya kebakaran
			ringan dan sedang lebih dari jarak
			maksimal -4,6 m. Bahaya kebakaran
			berat lebih dari jarak maksimal -3,7 m.
			5. Dalam ruang tersembunyi, jarak langit-
			langit dan atap lebih 80 cm, -
No	Komponen	Keandalan	Kriteria penilaian
			dipasang jenis kepala springkler dengan
			pancaran kebawah.
		Bobot =	Jumlah, perletakan dan jenis kurang sesuai
		8%	dengan persyaratan.
		Penilaian =	Penjelasan:
		0	Bangunan tidak memiliki springkler
		Nilai =	
		Keandalan	
		= K	
6	Sistem pemadam	В	1. Tersedia dalam jenis yang sesuai
	Luapan		dengan fungsi ruangan yang diproteksi
			2. Jumlah kapasitas sesuai dengan beban
			api dari fungsi ruangan yang
			diproteksi.

		Bobot =	1. Tersedia dalam jenis yang sesuai
		7%	dengan fungsi ruangan yang diproteksi.
			2. Jumlah kapasitas tidak sesuai dengan
		Penilaian =	beban api dari fungsi ruangan yang
		70	diproteksi
			Penjelasan: Sistem pemadam total
		Nilai = 4,9	luapan, sistem ini merupakan sistem
		ŕ	pemadam otomatis atau proteksi aktif
		Keandalan	hidran yang berhubungan dengan
		= C	ketersedian air.
		K	Tidak tersedia dalam jenis dan kapasitas
			yang sesuai dengan fungsi ruangan yang -
No	Komponen	Keandalan	Kriteria penilaian
			diproteksi.
7	Pengendalian	В	1. Fan pembuangan asap akan berputar
·	asap		berurutan setelah aktifnya detector asap
	F		yang ditempatkan dalam zona sesuai
			dengan reservoir asap yang dilayani
			fan.
			2. Detektor asap harus dalam keadaan
			bersih dan tidak terhalang oleh benda
			lain disekitarnya.
			3. Didalam kompartemen bertingkat
			banyak, sistem pengolahan udara seger
			melalui ruang kosong bangunan tidak
			menjadi satu dengan cerobong
			pembuangan asap.
			4. Tersedia panel control manual dan
			Indikator kebakaran serta buku

			petunjuk pengoperasian bagi petugas
			jaga. (tidak memenuhi)
		С	1. Fan pembuangan asap akan berputar
			berurutan setelah aktifnya detektor asap
			yang ditempatkan dalam zona sesuai
			dengan reservoir asap yang dilanyani
			fan.
			2. Detektor asap kotor atau terhalang oleh
			benda lain disekitarnya.
			3. Didalam kompartemen bertingkat
			banyak, sistem pengolahan udara
			beroperasi dengan menggunkan seluruh
			udara segar melalui ruang -
No	Komponen	Keandalan	Kriteria penilaian
			Kosong bangunan yang tidak menjadi
			satu dengan cerobong pembuatan asap.
			4. Tersedia panel control manual dan
			indikator kebakaran serta buku
			petunjuk pengoperasian bagi petugas
			juga
		Bobot =	Peralatan pengendali tidak terpasang
		8%	sesuai dengan persyaratan, baik jenis,
			jumlah atau tempatnya.
		Penilaian =	Penjelasan: Pengendalian asap terpasang,
		60	tetapi tidak berfungsi.
		Nilai = 4.8	
		Keandalan	
		= K	

8	Deteksi asap		1. Sistem deteksi asap memenuhi SNI 03-
			3689, mengaktifkan sistem peringatan
			penghuni bangunan.
			2. Pada ruang dapur dan area lain yang
			sering mengakibatkan terjadinya alarm
			palsu dipasang alarm panas, terkecuali
			telah dipasang springkler.
			3. Detektor asap yang terpasang dapat
			mengaktifkan sistem pengolahan
			udara secara otomatis, sistem
			pembuangan asap, ventilasi asap dan
			panas.
			4. Jarak antar detector >20 m dan <10
No	Komponen	Keandalan	Kriteria penilaian
			m dari dinding pemisah atau tirai asap.
		Bobot =	Sistem deteksi asap memenuhi SNI
		8%	03-3689, mengaktifkan sistem
		070	peringatan penghuni bangunan.
		Penilaian =	
		70	sering mengakibatkan terjadinya alarm
		70	palsu tidak dipasang alarm panas, atau
		Nilai = 5,6	springkler.
		Niiai = 3,0	
		Keandalan	Penjelasan: Gedung Museum Pengengan tidak mamiliki apringklar
			Penerangan tidak memiliki springkler.
		= C	3. Jarak antar detektor > 20 m dan 10 m
		IZ	dari dinding pemisah atau tirai asap.
		K	Tidak satupun tersedia peralaratan yang
	D 1		dimaksud.
9	Pembuangan asap	В	1. Kapasitas fan pembuang mampu
			mengisap asap.

			2. Terletak dalam reservoir asap setinggi
			2 meter dari lantai
			3. Laju pembuangan asap sesuai dengan
			persyaratan yang beralaku.
			4. Fan pembuangan asap mampu
			beroperasi terus menerus pada
			temperature 200 °C selang waktu 60
			_
			atau pada temperature 300 °C selang waktu 30'
			5. Luas horizontal asap dilayani minimal
			satu buah fan, pada titik kumpul dari
			panas di dalam reservoir asap, jauh
			dari perpotongan koridor -
No	Komponen	Keandalan	Kriteria penilaian
			atau mal
			6. Void eskalator dan tangga tidak
			digunakan sebagai jalur pembuangan
			asap.
			7. Udara pengganti dalam jumlah kecil
			harus disediakan secara otomatis /
			melalui bukaan ventilasi permanen,
			kecepatan tidak boleh lebih dari 2,5
			m/detik, didalam kompartemen
			bertingkat banyak melalui bukaan
			vertikal dengan kecepatan rata-rata 1
			m/ detik
		Bobot =	1. Kapasitas fan pembuangan dibawah
		7%	kapasitas yang dipersyartan.
			2. Pemasangan telah sesuai dengan
			persyartatan yang diperlukan.
		<u> </u>	

		Penilaian =	Penjelasan: Pembuangan asap tersedia
		70	tetapi tidak berfungsi atau rusak.
		Nilai = 4,9	
		Keandalan	
		= C	
		K	Tidak satupun tersedia peralatan yang
			dimaksud.
10	Lift kebakaran	В	1. Untuk penanggulangan saat terjadi
			kebakaran sekurang-kurangnya 1 buah
			lift kebakaran harus dipasang pada
			bangunan ketinggian efektif 25 m.
			2. Ukuran lift sesuai dengan fungsi -
No	Komponen	Keandalan	Kriteria penilaian
			bangunan yang berlaku.
			3. Lift kebakaran dalam saf yang tahap
			api, dioperasikan oleh petugas
			pemadam kebakaran dapat berhenti
			disetiap lantai, sumber daya listrik
			direncanakan dari 2 sumber
			menggunakan kabel tahan api,
			memiliki akses ke tiap lantai hunian
			4. Peringatan terhadap penggunaan lift
			pada saat kebakaran, dipasang di
			tempat yang mudah terlihat dan
			berbaca dengan tulisan tinggi huruf
			minimal 20 mm.
			5. Penempatan lift kebakaran pada lokasi
			yang mudah dijangkau penghuni.

		С	Pemasangan lift kebakaran telah sesuai
			dengan poin "B" hanya penempatan lift
			kebakaran pada lokasi yang tersembunyi
			dan tidak mudah dijangkau oleh
			penghuni.
		Bobot =	Tidak satupun tersedia peralatan yang
		7%	dimaksud.
			Penjelasan: Gedung tidak memiliki lift
		Penilaian =	kebakaran.
		0	
		Nilai = 0	
		Keandalan	
		= K	
No	Komponen	Keandalan	Kriteria penilaian
11	Cahaya darurat	В	1. Sistem pencahayaan darurat harus
	dan petunjuk arah		dipasang disetiap tangga yang
			dilindungi terhadap kebakaran, disetiap
			lantai dengan luas lantai > 300 m²,
			disetiap jalan terusan koridor.
			2. Desain sistem pencahayaan keadaan
			darurat beroperasi otomatis,
			memberikan pencahayaan yang cukup,
			dan harus memenuhi standar yang
			berlaku.
			3. Tanda eksis jeles terlihat dan dipasang
			berdekatan dengan pintu yang
			memberikan jalan keluar langsung
			pintu dari suatu tangga, eksit horizontal
			dan pintu yang melayani eksit.

			 4. Bila eksit tidak terlihat secara langsung dengan jelas oleh penghuni, harus dipasang tanda petunjuk dengan tanda panah penunjuk arah. 5. Setiap tanda eksit harus jelas dan pasti, diberi pencahayaan yang cukup, dipasang sedemikian rupa sehinga tidak terjadi gangguan listrik, tanda petunjuk arah keluar harus memenuhi standar yang berlaku.
		С	Cahaya darurat dan petunjuk arah telah dipasang sesuai dengan persyaratan, namun tingkat illuminasinya telah -
No	Komponen	Keandalan	Kriteria penilaian
			berkurang, karena kotor permukaan atau
			daya illuminasinya menurun.
		Bobot =	Cahaya darurat dan petunjuk arah
		8%	terpasang tidak memenuhi ketentuan baik
			tingkat illuminasi, warna, dimensi,
		Penilaian =	maupun penempatannya.
		0	Penjelasan: Gedung tidak mempunyai
			cahaya darurat dan petunjuk arah.
		Nilai = 0	
		Keandalan = K	
12	Listrik darurat	В	1. Daya yang disuplai sekurang-kurangnya
			dari 2 sumber yaitu sumber daya listrik
			PLN atau sumber daya darurat berupa
			batere, generator, dll

			2. Satuan instalasi kabel yang melayani
			sumber daya listrik darurat harus
			memenuhi kabel tahan api selama 60',
			catu daya dari sumber
		С	Daya terpasang sesuai dengan poin "B",
			namun kapasitas generator tidak
			memenuhi persyaratan minimal.
		Bobot =	Tidak ada sumber daya listrik cadangan
		8%	Penjelasan: Gedung tidak memiliki
			sumber listrik cadangan.
		Penilaian =	
		0	
No	Komponen	Keandalan	Kriteria penilaian
		Nilai = 0	
		Keandalan	
		= K	
13	Ruang pengendali	Bobot =	Tersedia dengan peralatan relatif
	operasi	7%	sederhana seperti cctv, namun cukup dapat
			memberikan dan atau membantu
		Penilaian =	memonitor bahaya kebakaran yang akan
		70	terjadi.
			Penjelasan: cctv lantai 1 ada 4 buah. Lantai
		Nilai = 4,9	dua tertdapat 2 buah cctv dan lantai 3 tidak
			memiliki cctv.
		Keandalan	
		= C	
		K	Tidak tersedia

4. Penilaian Proteksi Pasif

Penilaian terhadap proteksi pasif yang memberikan pengaruh KSKB dilakukan sesuai dengan teori di Bab 2 butir 2.7.2 hasil pengolahan diperlihatkan pada tabel berikut ini.

Tabel 4.11 Penilaian Proteksi Pasif

No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah	
			Penilaian	(%)		nilai	
1	2	3	4	5	6	7	
1	Ketahanan api	В	83	36	29,88	29,88	
	struktur						
No	Komponen	Keandalan	Hasil	Bobot	Nilai	Jumlah	
			Penilaian	(%)		nilai	
1	2	3	4	5	6	7	
	bangunan						
2	Kompartemenisasi	С	75	32	24	24	
3	Perlindungan	В	77	32	24,64	24,64	
	kebakaran						
	Nilai Total						
	Nilai Parameter Pro	teksi Pasif		26		20,415	

Tabel 4.12 Hasil penilaian komponen proteksi pasif (bobot 26%)

No	Komponen	Keandalan	Kriteria Penilaian
----	----------	-----------	--------------------

1	Ketahanan api	Bobot =	Ketahanan api komponen struktur
		36%	bangunan sesuai dengan yang
		Penilaian =	dipersyaratkan (tipe A, tipe B, tipe C)
		83	yang sesuai dengan fungsi klasifikasi
			bangunannya.
		Nilai =	Penjelasan: Penilaian keseluruhan
		29,88	komponen proteksi aktif, proteksi pasif,
			sarana penyelamatan dan kelengkapan
		Keandalan	tapak karena salah satu kriterianya
		= B	adalah seperti alarm.
		С	Proteksi terhadap struktur bangunan
			telah dilaksanakan, namun dibawah
			yang seharusnya.
		K	Tidak memenuhi semua kriteria
			tersebut diatas.
2	Kompartemenisasi	В	1. Berlaku untuk bangunan dengan luas
	ruang		lantai
			Konstruksi tipe A: 5000m ²
No	Komponen	Keandalan	Kriteria penilaian
			Konstruksi tipe B : 3500m ²
			Konstruksi tipe C : 2000m ²
			2. Luas lebih dari 18000m², volume
			108000m³ dilengkapi dengan
			springkler, dikelilingi jalan msuk
			kendaraan dan sistem pembuangan
			asap otomatis dengan jumlah, tipe
			dan cara pemasangan sesuai
			persyaratan yang berlaku
			3. Lebar jalan minimal 6 m, mobil
			pemadam dapat masuk koleksi.

		Bobot =	Semua kriteria dalam poin "B", namun			
		32%	jumlah springkler kurang dari yang			
			dipersyaratkan.			
		Penilaian =	Penjelasan: Dilengkapi dengan sistem			
		75	pembuangan asap otomatis, lebar jalan 6			
			m sehingga kendaraan mobil pemadam			
		Nilai = 24	bisa masuk. Akan tetapi, gedung tidak			
			memiliki springkler.			
		Keandalan				
		= C				
		K	Tidak memenuhi semua kriteria			
			tersebut diatas.			
3	Perlindungan	В	1. Bukaan harus dilindungi, diberi			
	bukaan.		penyetop api (tidak memenuhi,			
			karena terbuat dari bahan kayu)			
			2. Bukaan vertikel dari dinding tertutup			
			dari bawah sampai atas disetiap			
			lantai diberi penutup tahan api.			
No	Komponen	Keandalan	Kriteria penilaian			
			3. Sarana proteksi pada bukaan :			
			a. Pintu kebakaran, jendela			
			kebakaran, pintu penahan asap			
			dan penutup api sesuai dengan			
			standar pintu kebakaran.			
			b. Daun pintu dapat berputar disatu			
			sisi			
			c. Pintu mampu menahan asap 200			
			С			
			d. Tebal daun pintu 35mm			

	4. Jalan keluar / masuk pada dinding			
	tahan api:			
	a. Lebar bukaan pintu keluar harus			
	tidak lebih Y2 dari panjang			
	dindingn tahan api.			
	b. Tingkat isolasi min.30 menit			
	c. Harus menutup sendiri / otomatis.			
	(tidak memenuhi)			
Bobot =	Tidak memenuhi salah satu kriteria pada			
32%	penialaian baik " B "			
Penilaian =				
77				
Nilai =				
24,64				
Keandalan				
= B				
K	Tidak memenuhi semua kriteria			
	tersebut diatas.			

4.5 Analisis

Dari pengumpulan dan dan pengolahan data, dapat disampaikan anlisis sebagai berikut:

- a. Museum Perenangan memiliki asset sejarah bangsa Indonesia khusus peralatan dan dokumen sejarah penerangan di Indonesia yang perlu diperliharan dan di lindungi dengan baik.
- b. Dari hasil pemeriksaan prediksi kebakaran bisa terjadi di Gedung Museum Penerangan dapat disebab oleh aliran listrik, petir, dan api yang dihasilkan oleh puntung rokok pengunjung.

c. Hasil pengolahan data terhadap penilaian tingkat Keandalan Sistem Keselamatan Bagunan (KSKB) dari tabel 4.5, 4.7, 4.9 dan 4.11 secara ringkas diperlihatkan pada tabel 4.13 dibawah ini

Tabel 4.13 Total Penilaian Tingkat Keandalan Sistem Keselamatan Bagunan (KSKB)

No	Parameter KSKB	Nilai	Bobot	Hasil
			(%)	
1	Kelengkapan tapak	93,75	25	23,4375
2	Sarana penyelamatan	58,75	25	14,562
3	Sistem proteksi aktif	44,06	24	10,574
4	Sistem proteksi pasif	78,52	26	20,416
Jumlah				

Dari tabel 4.13 terlihat bahwa tingkat keandalan sistem keselamatan bangunan gedung Museum Penerangan terhadap bahaya kebakaran nilainya 68,9895 dengan katergori keandalan penilaian cukup (C). Namun, untuk menjamin keselamatan dan kenyamanan gedung secara keseluruhan, nilai keandalan sistem keselamatan bangunan tidaklah boleh kurang dari 80 atau baik (B), sebagaimana telah dijelaskan di Bab 2. Untuk itu, maka nilai minimum untuk tiap Parameter harus dilakukan perbaikan untuk mendapatkan nilai 80 (Baik).

- d. Parameter dan komponen yang menjadi perhatian dalam perbaikan adalah:
- 1) Komponen Kelengkapan Tapak

Komponen kelengkapan tapak memiliki nilainya baik (B) yaitu 93,75 Baik, sehingga direkomendasikan dipertahankan dengan melakukan :

- a) Pemeriksaan secara berkala
- b) Perawatan/pemeliharaan berkala
- c) Perawatan dan perbaikan berkala
- 2) Komponen Sarana Penyelamatan

Komponen sarana penyelamatan memiliki nilai kurang (K) yaitu 58,75. Jalan keluar harusnya memiliki 2 jalan exit dengan tinggi efektif 2,5 meter dengan lebar jalan keluar 2 meter. Namun, lebar jalan keluar kurang dari 2 meter atau hanya 1,5 meter dan jalan exit terhalangi oleh tumpukan barang-barang. Untuk itu, barang-barang yang menghalangi jalan keluar harus dipindahkan. Pada gedung Museum Penerangan tidak memiliki landasan helikopter kerana tinggi bangunan hanya 24 meter sehingga direkomendasikan dibuat Master point pengganti landasan Helikopter. Rekomendasi yang diusulkan mengacu pada bab 2 adalah :

- a) Penyetelan/perbaikan elemen,
- b) Melengkapi komponen yang kurang

3) Komponen Proteksi Aktif

Gedung museum Penerangan memiliki proteksi kebakaran aktfif yang kurang (K) yaitu 44,06 dari kriteria persyaratan yang baik, hal ini disebabkan karena komponen alat springkler yang tidak dimiliki gedung, lift kebakara, cahaya darurat dan tidak ada cadangan listrik darurat. Kemudian, untuk hidran gedung tidak berfungsi sebagai mana mestinya. Pada ruang pengendali operasi gedung tersedia dengan peralatan relative sederhana sperti CCTV, namun cukup dapat membantu memonitor bahaya yang akan terjadi, sehingga rekomendasi yang diusulkan mengacu pada bab 2 adalah:

- a) Penyetelan/perbaikan elemen
- b) Melengkapi komponen yang kurang

4) Komponen Proteksi Pasif

Komponen proteksi pasif nilainya cukup (C) 78,52 perbaikan yang diusulkan terhadap komponen Ketahanan api struktur bangunan Kompartemenisasi, dan Perlindungan kebakaran, sehingga rekomendasi yang diusulkan mengacu pada bab 2 adalah :

- a) Perawatan dan perbaikan berkala
- b) Penyetelan/perbaikan elemen

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- a. Secara keseruluhan Keandalan Sistem Keselamatan Bangunan (KSKB) pada gedung Museum Penerangan memiliki nilai 68,9895 yang berarti cukup (C) yaitu komponen proteksi kebakaran terpasang dan ada yang tidak terpasang dan sebagaian instalasi yang tidak sesuai dengan persyatan.
- b. Secara individu komponen penilaian Sub KSKB pada gedung Museum Peneranga, adalah sebagai berikut :
 - 1) Parameter KSKB, kelengkapan tapak memiliki nilai 93,75 yang bararti baik (B)
 - 2) Parameter KSKB, sarana penyelamatan memiliki nilai 58,75 yang berarti kurang (K)
 - 3) Parameter KSKB, sistem proteksi aktif memiliki nilai 44,04 yang berarti kurang (K)
 - 4) Parameter KSKB, sistem proteksi pasif memiliki nilai 78,52 yang berarti cukup (C).

5.2 Saran

- a. Museum Penerangan: Berdasarkan nilai keandalan sistem keselamatan bangunan gedung museum yang diperoleh, maka rekomendasi yang dapat di ajukan adalah untuk mengembalikan cukup (C) menjadi baik (B) atau dari nilai 69.8145 ke 80-100. Rekomendasinya adalah perawatan dan perbaikan berkala serta melakukan penyetelan atau perbaikan elemen serta melengkapi peralatan sistem proteksi kebakaran pada gedung.
- b. Komponen penilaian Sub KSKB:
 - Parameter KSKB, pada kelengkapan tapak hendaknya melakukan pemerikasaan berkala, perawatan dan perbaikan berkala pada hidran halaman.

- 2) Parameter KSKB, pada sarana penyelamatan hendaknya tidak terhalangi oleh tumpukan barang pada jalan keluar.
- 3) Parameter KSKB, pada sistem proteksi aktif hendaknya melakukan perbaikan elemen dan atau melengkapi komponen proteksi kebakaran aktif seperti *springkler*, listrik darurat, lift kebakaran dan cahaya darurat.
- 4) Parameter KSKB, pada sistem proteksi pasif hendaknya dilakukan perbaikan atau penyetelan pada pembuangan asap.
- c. Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung: Pada penilaian per sub komponen KSKB tidak akan terlihat nilai-nilai yang sangat kurang atau bahkan tidak ada sub komponennya pada gedung, karena nilai sub komponen KSKB di rata-ratakan. Kemudian, pada contoh kasus misalnya pada sub komponen KSKB sarana penyelamatan yaitu landasan helicopter dengan salah satu kriteria penilaiannya adalah hanya pada bangunan tinggi minimal 60 meter sedangkan pada gedung tertentu yang tinggi tidak sampai 60 meter akan memiliki nilai nol (O) namun harus tetap masuk penilaian secara keseluruhan sub komponen KSKB sarana penyelamatan. Maka dari itu, perlunya evaluasi terhadap pedoman teknis pemeriksaan keselamatan kebakaran gedung yang dikeluarkan oleh PUSLITBANG Perumahan dan Pemukiman.

DAFTAR PUSTAKA

- Departemen Pekerjaan Umum, 2008. Persyaratan Teknis Sistem Proteksi Kebakaran pada Bangunan Gedung dan Lingkungan. Peraturan Menteri Pekerjaan Umum No. 26/PRT/M/2008, 30 Desember 2008
- Departemen Pekerjaan Umum. 2009. Pedoman Manajemen Proteksi Kebakaran di Perkotaan. Peraturan Menteri Pekerjaan Umum No. 20/PRT/M/2009.
- Heni, Yusri. 2011. *Improving Our Safety Culture*. Jakarta: Gramedia Pustaka Utama.
- Ismayanti. 2010. Pengantar Pariwisata. Jakarta: Grasindo.
- Keputusan Menteri Tenaga Kerja Republik Indonesia No. Kep 189/MEN/1999/tentang Unit Penanggulangan Kebakaran di Tempat Kerja.
- Napitupulu, Painim, Dulbert Biatna dan Komalasari Dewi. 2015. Evaluasi Sistem Proteksi Kebakaran Perusahaan. Bandung: Alumni.
- Napitupulu, Painim dan Dulbert Biatna. 2015. Sistem Proteksi Kebakaran Kawasan Pemungkinan dan Perkantoran. Bandung. Alumni.
- Peraturan Menteri Tenaga Kerja dan Transmigrasi No: PER.04/MEN/1980 tentang Syarat-syarat Pemasangan dan Pemeliharaan Alat Pemadam Api Ringan.
- Ramli, Soehatman. 2010. Sistem Manajemen Keselamtan dan Kesehatan Kerja OHSAS 18001. Jakarta: Dian Rakya
- Ramli, Soehatman. 2010. Manajemen Kebakaran. Jakarta: Dian Rakyat.
- Saptaria, Erry et al. 2005. Pedoman Teknis Pemeriksaan Keselamatan Kebakaran Bangunan Gedung. Bandung. Puslitbang Pemukiman, Badan Penelitian dan Pengembangan PU, Departemen Pekerjaan Umum.
- Suma'mur P.K, 1981. Keselamtan Kerja dan Pencegahaan Kecelakaan. Jakarta: Gunung Agung.
- Soedarto, Gatot.1984. Pencegahan dan Penanggulangan Bahaya Kebakaran. Grafindo tama. Jakarta.
- SNI (03-1735-2000) tentang Tata Cara Perencanaan Akses Bangunan dan Akses Lingkungan untuk Pencegahan Bahaya Kebakaran pada Bangunan Gedung.

LAMPIRAN